scholarly journals Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat

2020 ◽  
Vol 15 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Abdur Rehim ◽  
Maryam Khan ◽  
Muhammad Imran ◽  
Muhammad Amjad Bashir ◽  
Sami Ul-Allah ◽  
...  

Lower nitrogen use efficiency (NUE) is a major yield limiting factor in semi-arid regions due to poor organic contents of the soils. There is a close relationship between soil organic matter and NUE of fertilizers. Therefore, this study was conducted to assess the effect of sole N fertilizer and its combinations with organic amendments (farm manure combinations) on N use efficiency and crop productivity. For this purpose, a two-year field study was conducted to access the influence of integrated use of synthetic N fertilizer (urea) and farm manure on N use efficiency and wheat productivity. Treatments include i.e. Control, 100% N by Urea + 0%N by farm manure (FM), 75% N by Urea + 25 % N by FM, 50% N by Urea + 50% N by FM, 25% N by Urea + 75% N by FM, 0% N by Urea + 100% N by FM arranged in a triplicate randomized complete block design having recommended N rate of 150 kg ha–1. The results revealed that the treatment having 75% Urea and 25% FM followed by 50% Urea and 50% FM showed better results in term of wheat growth and yield. There was 98% increase in N uptake of wheat grains and 200% increase in NUE by the application of 75% urea+25% FM relative to sole application of urea. This study suggests use of 3:1 ratio of urea and FM for maximum NUE and sustainable wheat production.

1998 ◽  
Vol 78 (4) ◽  
pp. 611-613 ◽  
Author(s):  
R. Michaud ◽  
G. Bélanger ◽  
A. Brégard ◽  
J. Surprenant

Improvement of N use efficiency of timothy (Phleum pratense L.) involves higher DM yield but, for feeding purposes, N concentration should also be considered. Differences in N use efficiency were found among 40 genotypes of timothy. The analysis of residues of the linear regression between N uptake and DM yield of all genotypes allowed for the selection of genotypes with both high N use efficiency and contrasted N concentrations. Key words: Phleum pratense L., timothy, genetic selection, nitrogen use efficiency


2019 ◽  
Vol 22 (2) ◽  
pp. 63-69
Author(s):  
ATMS Hossain ◽  
F Rahman ◽  
PK Saha

A field experiment was conducted on validation of prilled urea (PU) and urea super granule (USG) applied by applicators on yield and nitrogen use efficiency during Boro 2014 season at Bangladesh Rice Research Institute (BRRI) farm, Gazipur (AEZ 28). Six treatment combinations of different N doses and methods of N application were tested to compare urea-N application by PU and USG applicator for rice yield, N uptake and N use efficiency over urea broadcasting. Application of N as PU or USG through applicator has same effect on grain yield, N uptake and N use efficiency compared with urea broadcasting. Statistically similar grain yield were observed with N application as PU or USG @ 78 kg N ha-1 by applicator which was comparable with urea broadcasting @ 135 kg N ha-1. The N concentration and uptake in both panicle initiation (PI) and maturity stage were higher in USG deep placement than PU deep placement by applicators but the difference was not significant. Although agronomic use efficiency (AUE) of N was slightly higher in PU than USG applied by applicators but the recovery efficiency (RE) of N was higher in USG than PU. Bangladesh Rice j. 2018, 22(2): 63-69


2020 ◽  
Author(s):  
Jie Wu ◽  
Zi-Sheng Zhang ◽  
Jing-Qiu Xia ◽  
Alamin Alfatih ◽  
Ying Song ◽  
...  

AbstractNitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavor in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the NIN-like protein OsNLP4 significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signaling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 is a master regulator of NUE in rice and sheds light on crop NUE improvement.


2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


Jurnal Agro ◽  
2022 ◽  
Vol 8 (2) ◽  
pp. 262-273
Author(s):  
Risqa Naila Khusna Syarifah ◽  
Zulfa Ulinuha ◽  
Purwanto Purwanto

Pemupukan N pada padi hibrida menjadi krusial mengingat varietas padi hibrida sangat responsif, sehingga harus diketahui dosis yang tepat untuk menghasilkan produksi yang tinggi. Penelitian ini bertujuan untuk mengkaji pengaruh dosis N terhadap serapan N, efisiensi penggunaan N, dan hasil padi hibrida. Penelitian menggunakan Rancangan Acak Kelompok yang diulang tiga kali. Faktor pertama adalah varietas padi hibrida yang terdiri dari Varietas Mapan P05, Varietas SL-8 SHS Sterling, dan Varietas Intani 602. Faktor kedua adalah dosis pemupukan N yang terdiri dari kontrol tanpa pemupukan N, dosis N 100 kg ha-1, dan dosis N 200 kg ha-1. Terdapat respon yang beragam antar varietas padi hibrida terhadap taraf pemupukan N, Serapan N, efisiensi penggunaan N tertinggi yang dihasilkan oleh varietas Intani 602 masing-masing sebesar 138,57 %, dan 36,13%. Serapan N tanaman padi tertinggi dicapai pada dosis N 100 kg ha-1, dan efisiensi penggunaan N tertinggi pada dosis N 200 kg ha-1. Hasil gabah tertinggi dicapai pada varietas Mapan P05 sebesar 7,42 t ha-1, dan dosis pemupukan N 100 kg ha-1 memberikan hasil tertinggi sebesar 7,47 t ha-1. Implikasi dari penelitian ini bahwa dosis nitrogen 100 kg ha-1 dapat menjadi acuan sebagai dosis pemupukan N varietas padi hibrida di Indonesia. Hybrid rice is responsive to nitrogen, so it’s necessary to find the optimum dose to optimize the production. The  aim of this research was to examine the effect of nitrogen on N uptake, N use efficiency, and yield of hybrid rice. This study used a randomized block design with three replications. The first factor consisted of the  Mapan P05 variety, the SL-8 SHS Sterling variety, and Intani 602 variety. The second factor was Nitrogen dosage consisted of control, 100 kg ha-1, and 200 kg ha-1. There were various responses among hybrid rice varieties to the level of fertilization. The highest N uptake and N use efficiency was achieved in the Intani 602 variety at 138.57% and 36.13%, respectively. The highest N uptake was achieved at 100 kg ha-1 of N, and the highest N use efficiency was at 200 kg ha-1. The highest yield was achieved in the Mapan P05 variety (7.42 t ha-1), and the dose of N at 100 kg ha-1 gave the highest yield (7.47 t ha-1). The implication of this research is that the nitrogen dose of 100 kg ha-1 can be used as a reference for hybrid rice varieties fertilizer in Indonesia.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Hua ◽  
Peiyu Luo ◽  
Ning An ◽  
Fangfang Cai ◽  
Shiyu Zhang ◽  
...  

Abstract It is great of importance to better understand the effects of the long-term fertilization on crop yields, soil properties and nitrogen (N) use efficiency in a rotation cropping cultivation system under the conditions of frequent soil disturbance. Therefore, a long-term field experiment of 40 years under soybean-maize rotation was performed in a brown soil to investigate the effects of inorganic and organic fertilizers on crop yields, soil properties and nitrogen use efficiency. Equal amounts of 15N-labelled urea with 20.8% of atom were used and uniformly applied into the micro-plots of the treatments with N, NPK, M1NPK, M2NPK before soybean sowing, respectively. Analyses showed that a total of 18.3–32.5% of applied N fertilizer was taken up by crops in the first soybean growing season, and that the application of manure combining with chemical fertilizer M2NPK demonstrated the highest rate of 15N recovery and increased soil organic matter (SOM) and Olsen phosphorus (Olsen P), thereby sustaining a higher crop yield and alleviating soil acidification. Data also showed that no significant difference was observed in the 15N recovery from residue N in the second maize season plant despite of showing a lower 15N recovery compared with the first soybean season. The recovery rates of 15N in soils were ranged from 38.2 to 49.7% by the end of the second cropping season, and the residuals of 15N distribution in soil layers revealed significant differences. The M2NPK treatment demonstrated the highest residual amounts of 15N, and a total of 50% residual 15N were distributed in a soil layer of 0–20 cm. Our results showed that long-term application of organic fertilizers could effectively promote N use efficiency by increasing SOM and improving soil fertility, and thus leading to an increase in crop yields. This study will provide a scientific reference and guidance for improving soil sustainable productivity by manure application.


2014 ◽  
Vol 11 (2) ◽  
pp. 215-220
Author(s):  
A Naznin ◽  
H Afroz ◽  
TS Hoque ◽  
MH Mian

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during the aman season of 2012 to investigate the effects of prilled urea (PU), urea super granule (USG) and NPK briquette on NH4- N concentration in field water, yield and nitrogen (N) use efficiency (NUE) of BR22 rice under reduced water conditions. The experiment was laid out in a randomized complete block design with three replications. There were altogether eight treatment combinations viz. T1: Control (No N fertilizer), T2: 52 kg N ha-1 from USG, T3: 104 kg N ha-1 from USG, T4: 78 kg N ha-1 from PU, T5: 120 kg N ha-1 from PU, T6: 51 kg N ha-1 from NPK briquette, T7: 78 kg N ha-1 from USG and T8: 78 kg N ha-1 from NPK briquette. Water samples were collected from rice field for seven consecutive days after deep placement of USG and the first split application of PU and the samples were analyzed for NH4-N. The Highest concentration of NH4-N in water was observed at the second day of PU application followed by gradual decrease with time. The yield contributing characters like plant height, panicle length, number of effective tillers hill-1 and grains panicle-1 were significantly influenced by different treatments. The highest grain yield of 3.93 t ha-1 was recorded from 104 kg N ha-1 as USG (T3) and the lowest value of 2.12 t ha-1 was obtained from control. The N use efficiency was increased when the N was applied as USG. The overall results revealed that application of USG and NPK briquette may be practised for obtaining better yields in addition to increasing the efficiency of N fertilizer. DOI: http://dx.doi.org/10.3329/jbau.v11i2.19897 J. Bangladesh Agril. Univ. 11(2): 215-220, 2013


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 214-217 ◽  
Author(s):  
S.B. Phillips ◽  
J.G. Warren ◽  
G.L. Mullins

Previous work suggests that `Beauregard' sweetpotato [Ipomoea batatas (L.) Lam.] has a much lower N requirement than other common cultivars. Over the past 10 years, `Beauregard' has become the premier sweetpotato cultivar grown in Virginia; however, N fertilizer recommendations have not been reassessed to consider the potentially lower N requirement of `Beauregard'. The objectives of this study were to evaluate the effects of N rate and application timing on root yield, quality, and N use efficiency for `Beauregard' sweetpotato production in Virginia. A field study was conducted each year from 2000 to 2002 at the Eastern Shore Agricultural Research and Extension Center, Painter, Va. Nitrogen fertilizer was applied at rates of 28, 56, and 84 kg·ha-1 either before transplanting, 2 to 3 weeks after transplanting (WAT), or 4 to 5 WAT. A check treatment that received no N fertilizer was also included. Optimum N rates varied annually; under normal precipitation, root yield was greatest at the 28-kg·ha-1 rate, while 56 kg·ha-1 was required for maximum yield in wet conditions. Of note is that this range of rates is considerably lower than the current N recommendation for Virginia sweetpotato production (56 to 84 kg·ha-1). Delaying N application until 2 to 3 WAT further increased marketable root yield compared with applying N before transplanting or 4 to 5 WAT. Crude protein and N uptake increased with increasing N rate up to 84 kg·ha-1; however, N use efficiency was highest (67%) when 28 kg·ha-1 was applied 2 to 3 WAT.


2013 ◽  
Vol 93 (6) ◽  
pp. 1009-1016 ◽  
Author(s):  
William N. MacDonald ◽  
Theo J. Blom ◽  
M. James Tsujita ◽  
Barry J. Shelp

MacDonald, W. N., Blom, T. J., Tsujita, M. J. and Shelp, B. J. 2013. Review: Improving nitrogen use efficiency of potted chrysanthemum: Strategies and benefits. Can. J. Plant Sci. 93: 1009–1016. Floricultural greenhouse operations can pose significant environmental risk due to the leaching and runoff of nutrients such as [Formula: see text]. To face this challenge, Ontario growers have adopted recirculating systems, such as the subirrigated “ebb and flow” system, on benches, troughs and concrete floors. Chrysanthemum (Chrysanthemum morifolium Ramat.) is the most commonly grown floricultural greenhouse crop species in the world and the potted type is well adapted to subirrigation. Reduction of N fertilization towards the end of the crop cycle is generally recommended to improve the shelf life of cut and potted plants, but it is uncertain how this practice influences the N status of the plant and the electrical conductivity of the growing medium. In this review, we discuss N use efficiency and strategies for managing the [Formula: see text] status of plants, and then propose that this knowledge can help to improve the N use efficiency of potted chrysanthemum grown with subirrigation under greenhouse conditions.


Sign in / Sign up

Export Citation Format

Share Document