scholarly journals Assessment of genetic diversity and relationship among some commercial cucumber varieties and genotypes using RAPD markers

2013 ◽  
Vol 6 (1-2) ◽  
pp. 51-63
Author(s):  
SM Faisal ◽  
MS Haque ◽  
KM Nasiruddin ◽  
MM Islam ◽  
MA Shrafuzzaman ◽  
...  

Genetic variability among the genotypes of any species could be utilized for its improvement. PCR-based Random Amplified Polymorphic DNA (RAPD) technique was used to determine the genetic diversity and relationship among 10 cucumber varieties and genotypes. Five decamer primers were used to amplify genomic DNA and the primers yielded a total of 54 bands of which 36 bands were polymorphic and 18 bands were monomorphic. The UPGMA dendrogram based on Nei’s (1972) genetic distance indicated segregation of 10 cucumber varieties and genotypes into two main clusters. Variety Joti alone grouped in cluster 1 while variety Green Master, Shahi-50, Shikha, Shila, Shital, Naogaon-5, Shohag-50, Giant Long and genotype CS-043 grouped in cluster 2. Variety Shila was very close to variety Shital with the least genetic distance (0.1712). The highest genetic distance (0.5352) was found between Joti and Naogaon-5. DOI: http://dx.doi.org/10.3329/cujbs.v6i1-2.17081 The Chittagong Univ. J. B. Sci.,Vol. 6(1&2):51-63, 2011


2013 ◽  
Vol 22 (2) ◽  
pp. 127-136
Author(s):  
MM Uddin ◽  
MI Khalil ◽  
MS Haque ◽  
MB Meah

Random amplified polymorphic DNA (RAPD) assay was performed to estimate genetic polymorphisim in ten chili cultivars. Out of 12 primers four (OPA11, OPB03, OPB04 and OPB17) showed amplification of genomic DNA and generated 21 distinct score able bands of which 17 (80.95%) were polymorphic. The highest percentage (85.71) polymorphic locus was found in OPB03 while the lowest (66.67) in OPA11. The highest genetic distance was computed between Jamalpur Balujuri and Matal marich with the lowest genetic identity as against the lowest genetic distance between Hajari marich and Balujuri marich. The UPGMA dendogram indicated segregation of ten chili varieties and genotypes into two main clusters. Variety Bogra marich and Matal marich formed cluster 1 and Balujuri marich, Deshi marich, Jamalpuri balujuri, Bindu marich, Syloti, Hajari, Biroli city, and the genotype Ausadhebrara grouped in cluster 2. The result indicates the genetic diversity among the chili cultivars and RAPD marker could be used for improvement of chili varieties. DOI: http://dx.doi.org/10.3329/ptcb.v22i2.14201 Plant Tissue Cult. & Biotech. 22(2): 127-136, 2012 (December)



2005 ◽  
Vol 48 (4) ◽  
pp. 511-521 ◽  
Author(s):  
Leandro Eugênio Cardamoni Diniz ◽  
Claudete de Fátima Ruas ◽  
Valdemar de Paula Carvalho ◽  
Fabrício Medeiros Torres ◽  
Eduardo Augusto Ruas ◽  
...  

The genetic variability of 40 accessions of_C. arabica was evaluated using a combination of the random amplified polymorphic DNA (RAPD) technique and restriction digestion of genomic DNA. The genetic variability and the relatedness among all accessions were initially evaluated using 195 RAPD primers which revealed a very low level of genetic variation. To improve the efficiency in the detection of polymorphism, the genomic DNA of all accessions were submitted to digestion with restriction endonucleases prior to PCR amplification. A total of 24 primers combined with restriction digestion of DNA rendered 318 bands, of which 266 (83.65%) were polymorphic. The associations among genotypes were estimated using UPGMA-clustering analysis. The accessions were properly clustered according to pedigree and agronomic features. The ability to distinguish among coffee accessions was greater for RAPD plus restriction digestion than for RAPD alone, providing evidences that the combination of the techniques was very efficient for the estimation of genetic relationship among_C. arabica genotypes.



Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.



1970 ◽  
Vol 19 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Md. Sanaullah Biswas ◽  
Md. Abdullah Yousuf Akhond ◽  
Md. Al-Amin ◽  
Mahmuda Khatun ◽  
Muhammed Rezwan Kabir

RAPD technique was used as a tool for assessing genetic diversity and varietal relationships among ten varieties of eggplant. Out of 21 primers screened four were selected. With these primers 76 clear and bright fragments were obtained of which 44 fragments considered polymorphic. The proportion of polymorphic loci and gene diversity values across all loci were 57.89% and 0.23, respectively. The UPGMA dendrogram based on genetic distance segregated the ten varieties of eggplant into two main clusters. Dohazari, Kazla, Nayantara and ISD-006 were grouped together in cluster I whereas Uttara, Islampuri, Khatkhatia, Singnath, BARI Begun-08 and Eggplant Line-083 into cluster II. Kazla and Nayantara variety pair was very close to each other with the highest intervarietal similarity index (92.54%) and lowest genetic distance (0.14). On the other hand, Khatkhatia and Nayantara pair was the lowest intervarietal similarity index (41.67%) with highest genetic distance (0.48). Therefore, identification of genetically distinct varieties using RAPD markers could be a potential tool for eggplant improvement. Key words: Eggplant, Polymorphism, Genetic relationship, RAPD D.O.I. 10.3329/ptcb.v19i2.5006 Plant Tissue Cult. & Biotech. 19(2): 119-126, 2009 (December)



1970 ◽  
Vol 34 (3) ◽  
pp. 493-503 ◽  
Author(s):  
KK Ghosh ◽  
ME Haque ◽  
S Parvin ◽  
F Akhter ◽  
MM Rahim

This investigation was aimed at exploring the genetic diversity and relationship among nine Brassica varieties, namely BARI Sharisha-12, Agrani, Sampad, BINA Sharisha-4, BINA Sharisha-5, BARI Sharisha-13, Daulot, Rai-5, Alboglabra using Random Amplified Polymorphic DNA (RAPD) markers. In total, 59 reproducible DNA bands were generated by four arbitrary selected primers of which 58 (98.03%) bands were proved to be polymorphic. These bands ranged from 212 to 30686 bp in size. The highest proportion of polymorphic loci and gene diversity values were 37.29% and 0.1373, respectively, for BARI Sharisha-12 and the lowest proportion of polymorphic loci and gene diversity values were 8.47% and 0.0318, 8.47% and 0.0382 for BINA Sharisha-4 and Rai-5, respectively. A dendrogram was constructed using unweighted pair group method of arithmetic mean (UPGMA). The result of cluster analysis indicated that the 9 accessions were capable of being classified into 2 major groups. One group consists of BARI Sharisha-12, Agrani, Sampad, Daulot, Rai-5, Alboglabra. where Daulot and Rai-5 showed the lowest genetic distance of 0.049. And another group contains BINA Sharisha-4, BINA Sharisha-5, and BARI Sharisha-1 3, where BINA Sharisha-5 and BARI sharisha-13 showed genetic distance of 0.071. Key Words: RAPD, Brassica, genetic distance, polymorphic band. DOI: 10.3329/bjar.v34i3.3976 Bangladesh J. Agril. Res. 34(3) : 493-5032, September 2009



2019 ◽  
Vol 6 (2) ◽  
pp. 215-225
Author(s):  
Nazmul Islam Mazumder ◽  
Tania Sultana ◽  
Prtitish Chandra Paul ◽  
Dinesh Chandra Roy ◽  
Deboprio Roy Sushmoy ◽  
...  

Twenty six rice lines of PBRC (salt tolerant line-20) × BRRI dhan-29 were used to evaluate salinity tolerance at the seedling stage and tested for salt tolerance using RAPD markers. Salinity screening was done using hydrophonic system at the greenhouse following IRRI standard protocol. Among the studied line, ten were moderately salinity tolerant, nine susceptible and rest of the lines highly susceptible. For assessing genetic diversity and relationship of F3 rice lines including two parents were tested against PCR-based Random Amplified Polymorphic DNA (RAPD) technique using three arbitrary decamer primers; OPA02, OPC01, and OPC12. Selected three primers generated a total of 14 bands. Out of 14 bands, 12 bands (86.67%) were polymorphic and 2 bands (13.33%) were monomorphic. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei’s (1972) genetic distance produced 2 main clusters of the 28 rice genotypes. Most of the moderately tolerant lines and PBRC (STL-20) (tolerant variety) were grouped in same cluster due to lower genetic distance, while maximum susceptible along with BRRI dhan29 (susceptible variety) showed higher genetic distance with PBRC (STL-20) and moderately tolerant lines. This result indicates that the lines which formed grouped together, they are less diversed. On the other hand the lines remain in different clusters or different groups, are much diversed. Thus RAPD perform a potentially simple, rapid and reliable method to evaluate genetic diversity and molecular characterization as well. Res. Agric., Livest. Fish.6(2): 215-225, August 2019



2015 ◽  
Vol 5 (3) ◽  
pp. 728-731
Author(s):  
Ziyad A. Abed

 A field experiments was conducted in greenhouse to determinate the genetic diversity among 7 genotypes from maize(4 inbreds and 3hybrids) by using molecular markers with Random Amplified polymorphic DNA(RAPD),that shown high level of polymorphism among genotypes of maize ,where the percentage of polymorphism ranged from(66%) and (83.33%) the highest number of polymorphism band (16) and size fragment ranged between (3800 bp) with the primer ( Bnlg 1185 ) and the lowest 180 with the primer( Bnlg 1464).The genetic distance value ranged between (0.3451) and (0.6534) ,where the lowest genic distance between (k1 and k2),while the highest genetic distance between(k4) and (k3xk4).In this study RAPD markers were shown to be powerful to detect genetic diversity and provided us high polymorphism values within genotypes of maize ,also we can conclude for useful those primers for genetic studies in plant breeding programs for developing synthetic cultivars or improved inbreds of maize. 



2011 ◽  
Vol 41 (No. 2) ◽  
pp. 73-78 ◽  
Author(s):  
L. Milella ◽  
J. Salava ◽  
G. Martelli ◽  
I. Greco ◽  
E.F. Cusimamani ◽  
...  

Random amplified polymorphic DNA (RAPD) markers are widely used for evaluating the genetic relationship of crop germplasm. Five different landraces of yacon (Smallantus sonchifolius (Poepp. and Hendl.) H. Robinson; Asteraceae) collected in various countries and showing different morphological traits were investigated using a total of 61 decamer primers. A total of 282 RAPD markers were scored and 28.7% of them were polymorphic at least within landraces. RAPD markers generated by one primer (OBP14) discriminated between all landraces. Markers were used to calculate genetic similarity coefficient and to build a dendrogram representing the genetic relationship between analysed landraces. The results suggest that RAPD markers could be used as a reliable tool to perform fingerprinting studies in Smallantus sonchifolius genome. This is the first report on the use of RAPDs to evaluate genetic distance and to distinguish between different landraces in yacon.  



2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Silvia Correa Santos ◽  
Raquel dos Santos Carvalho ◽  
Livia Maria Chamma Davide

Abstract The genus Anacardium presents nine species, of these, three have sub-bush size, common in the Cerrado of the Center-West of Brazil. The objective of this work was to evaluate the genetic variability of the species, collected in eleven provenances, using RAPD markers. Genomic DNA from 122 accessions was extracted and amplified with 25 decamer primers. The results indicated polymorphism, ranging from 77.71% to 96.18%. The distribution of genetic diversity among and within populations shows that 27.14% of the variability is found between populations and 37.44% within the populations, suggesting the existence of genetic variability that may be related to the reproductive strategies adopted by the species throughout its evolution. The index of variation within the provenances (93.36%) was higher than the index found among populations (6.64%). Molecular analysis indicated that there is genetic divergence between and within the studied populations of Anacardium humile A. St. - Hill. The origin of Itajá-GO presented the highest genetic diversity, presenting the highest values of genetic diversity index, phenotypic diversity and higher percentage of polymorphic loci.



2019 ◽  
Vol 20 (3) ◽  
pp. 847-852
Author(s):  
TATI BARUS ◽  
RONALDO HALIM ◽  
ANASTASIA TATIK HARTANTI ◽  
PAULUS KEVIN SAPUTRA

Abstract. Barus T, Halim R, Hartanti AT, Saputra PK. 2019. Genetic diversity of Rhizopus microsporus from traditional inoculum of tempeh in Indonesia based on ITS sequences and RAPD marker. Biodiversitas 20: 847-852. The main microorganism for tempeh fermentation is Rhizopus microsporus. These days, many tempeh producers use commercial inoculum, such as ‘Raprima’ as resource of R. microsporus. As a result, the genetic diversity of R. microsporus that had been reported in Indonesia has diminished. Information about genetic diversity is needed as a basis to select R. microsporus as tempeh inoculum. This research aims to investigate the genetic diversity of R. microsporus from waru leaves based on Internal Transcribed Spacer (ITS) Sequence and Random Amplified Polymorphic DNA (RAPD) markers. A total of 25 R. microsporus were isolated from traditional inoculum waru leaves (Inoculum 1) and traditional inoculum other than waru leaves (Inoculum 2). Amplification of ITS sequence was done using universal primer pairs of ITS-4 and ITS-5. Amplification of RAPD markers was done using primers OPC-08, OPC-19, OPQ-6, R-108, OPA-09 and OPJ-20. ITS sequence was not sufficient to compare the similarities among R. microsporus. On the other hand, RAPD markers successfully compared the similarities among 25 R. microsporus. A total of 25 R. microsporus were divided into 9 clusters. R. microsporus from Inoculum 1 grouped into Cluster 1, Cluster 3 and Cluster 4-8. Inoculum 2 grouped into Cluster 2 and Cluster 9. R. microsporus from tempeh grouped into Cluster 4 and was different from Inoculum 1 and Inoculum 2, except for TB3.



Sign in / Sign up

Export Citation Format

Share Document