scholarly journals An Algorithmic Procedure for Finding Nash Equilibrium

2020 ◽  
Vol 40 (1) ◽  
pp. 71-85
Author(s):  
HK Das ◽  
T Saha

This paper proposes a heuristic algorithm for the computation of Nash equilibrium of a bi-matrix game, which extends the idea of a single payoff matrix of two-person zero-sum game problems. As for auxiliary but making the comparison, we also introduce here the well-known definition of Nash equilibrium and a mathematical construction via a set-valued map for finding the Nash equilibrium and illustrates them. An important feature of our algorithm is that it finds a perfect equilibrium when at the start of all actions are played. Furthermore, we can find all Nash equilibria of repeated use of this algorithm. It is found from our illustrative examples and extensive experiment on the current phenomenon that some games have a single Nash equilibrium, some possess no Nash equilibrium, and others had many Nash equilibria. These suggest that our proposed algorithm is capable of solving all types of problems. Finally, we explore the economic behaviour of game theory and its social implications to draw a conclusion stating the privilege of our algorithm. GANIT J. Bangladesh Math. Soc.Vol. 40 (2020) 71-85

2003 ◽  
Vol 05 (04) ◽  
pp. 375-384 ◽  
Author(s):  
GRAZIANO PIERI ◽  
ANNA TORRE

We give a suitable definition of Hadamard well-posedness for Nash equilibria of a game, that is, the stability of Nash equilibrium point with respect to perturbations of payoff functions. Our definition generalizes the analogous notion for minimum problems. For a game with continuous payoff functions, we restrict ourselves to Hadamard well-posedness with respect to uniform convergence and compare this notion with Tykhonov well-posedness of the same game. The main results are: Hadamard implies Tykhonov well-posedness and the converse is true if the payoff functions are bounded. For a zero-sum game the two notions are equivalent.


2018 ◽  
Vol 20 (03) ◽  
pp. 1840001
Author(s):  
Stefanos Leonardos ◽  
Costis Melolidakis

Given a bimatrix game, the associated leadership or commitment games are defined as the games at which one player, the leader, commits to a (possibly mixed) strategy and the other player, the follower, chooses his strategy after being informed of the irrevocable commitment of the leader (but not of its realization in case it is mixed). Based on a result by Von Stengel and Zamir [2010], the notions of commitment value and commitment optimal strategies for each player are discussed as a possible solution concept. It is shown that in nondegenerate bimatrix games (a) pure commitment optimal strategies together with the follower’s best response constitute Nash equilibria, and (b) strategies that participate in a completely mixed Nash equilibrium are strictly worse than commitment optimal strategies, provided they are not matrix game optimal. For various classes of bimatrix games that generalize zero-sum games, the relationship between the maximin value of the leader’s payoff matrix, the Nash equilibrium payoff and the commitment optimal value are discussed. For the Traveler’s Dilemma, the commitment optimal strategy and commitment value for the leader are evaluated and seem more acceptable as a solution than the unique Nash equilibrium. Finally, the relationship between commitment optimal strategies and Nash equilibria in [Formula: see text] bimatrix games is thoroughly examined and in addition, necessary and sufficient conditions for the follower to be worse off at the equilibrium of the leadership game than at any Nash equilibrium of the simultaneous move game are provided.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 132
Author(s):  
Valery Y. Glizer

A finite-horizon two-person non-zero-sum differential game is considered. The dynamics of the game is linear. Each of the players has a quadratic functional on its own disposal, which should be minimized. The case where weight matrices in control costs of one player are singular in both functionals is studied. Hence, the game under the consideration is singular. A novel definition of the Nash equilibrium in this game (a Nash equilibrium sequence) is proposed. The game is solved by application of the regularization method. This method yields a new differential game, which is a regular Nash equilibrium game. Moreover, the new game is a partial cheap control game. An asymptotic analysis of this game is carried out. Based on this analysis, the Nash equilibrium sequence of the pairs of the players’ state-feedback controls in the singular game is constructed. The expressions for the optimal values of the functionals in the singular game are obtained. Illustrative examples are presented.


2005 ◽  
Vol 50 (165) ◽  
pp. 121-144
Author(s):  
Bozo Stojanovic

Market processes can be analyzed by means of dynamic games. In a number of dynamic games multiple Nash equilibria appear. These equilibria often involve no credible threats the implementation of which is not in the interests of the players making them. The concept of sub game perfect equilibrium rules out these situations by stating that a reasonable solution to a game cannot involve players believing and acting upon noncredible threats or promises. A simple way of finding the sub game perfect Nash equilibrium of a dynamic game is by using the principle of backward induction. To explain how this equilibrium concept is applied, we analyze the dynamic entry games.


2019 ◽  
Vol 21 (02) ◽  
pp. 1940011
Author(s):  
Thomas A. Weber

To quantify a player’s commitment in a given Nash equilibrium of a finite dynamic game, we map the corresponding normal-form game to a “canonical extension,” which allows each player to adjust his or her move with a certain probability. The commitment measure relates to the average overall adjustment probabilities for which the given Nash equilibrium can be implemented as a subgame-perfect equilibrium in the canonical extension.


Author(s):  
Yue Guan ◽  
Qifan Zhang ◽  
Panagiotis Tsiotras

We explore the use of policy approximations to reduce the computational cost of learning Nash equilibria in zero-sum stochastic games. We propose a new Q-learning type algorithm that uses a sequence of entropy-regularized soft policies to approximate the Nash policy during the Q-function updates. We prove that under certain conditions, by updating the entropy regularization, the algorithm converges to a Nash equilibrium. We also demonstrate the proposed algorithm's ability to transfer previous training experiences, enabling the agents to adapt quickly to new environments. We provide a dynamic hyper-parameter scheduling scheme to further expedite convergence. Empirical results applied to a number of stochastic games verify that the proposed algorithm converges to the Nash equilibrium, while exhibiting a major speed-up over existing algorithms.


Author(s):  
Alfredo Garro

Game Theory (Von Neumann & Morgenstern, 1944) is a branch of applied mathematics and economics that studies situations (games) where self-interested interacting players act for maximizing their returns; therefore, the return of each player depends on his behaviour and on the behaviours of the other players. Game Theory, which plays an important role in the social and political sciences, has recently drawn attention in new academic fields which go from algorithmic mechanism design to cybernetics. However, a fundamental problem to solve for effectively applying Game Theory in real word applications is the definition of well-founded solution concepts of a game and the design of efficient algorithms for their computation. A widely accepted solution concept of a game in which any cooperation among the players must be selfenforcing (non-cooperative game) is represented by the Nash Equilibrium. In particular, a Nash Equilibrium is a set of strategies, one for each player of the game, such that no player can benefit by changing his strategy unilaterally, i.e. while the other players keep their strategies unchanged (Nash, 1951). The problem of computing Nash Equilibria in non-cooperative games is considered one of the most important open problem in Complexity Theory (Papadimitriou, 2001). Daskalakis, Goldbergy, and Papadimitriou (2005), showed that the problem of computing a Nash equilibrium in a game with four or more players is complete for the complexity class PPAD-Polynomial Parity Argument Directed version (Papadimitriou, 1991), moreover, Chen and Deng extended this result for 2-player games (Chen & Deng, 2005). However, even in the two players case, the best algorithm known has an exponential worst-case running time (Savani & von Stengel, 2004); furthermore, if the computation of equilibria with simple additional properties is required, the problem immediately becomes NP-hard (Bonifaci, Di Iorio, & Laura, 2005) (Conitzer & Sandholm, 2003) (Gilboa & Zemel, 1989) (Gottlob, Greco, & Scarcello, 2003). Motivated by these results, recent studies have dealt with the problem of efficiently computing Nash Equilibria by exploiting approaches based on the concepts of learning and evolution (Fudenberg & Levine, 1998) (Maynard Smith, 1982). In these approaches the Nash Equilibria of a game are not statically computed but are the result of the evolution of a system composed by agents playing the game. In particular, each agent after different rounds will learn to play a strategy that, under the hypothesis of agent’s rationality, will be one of the Nash equilibria of the game (Benaim & Hirsch, 1999) (Carmel & Markovitch, 1996). This article presents SALENE, a Multi-Agent System (MAS) for learning Nash Equilibria in noncooperative games, which is based on the above mentioned concepts.


2005 ◽  
Vol 07 (01) ◽  
pp. 73-90
Author(s):  
YOSI BEN-ASHER ◽  
EITAN FARCHI

We introduce a new zero-sum matrix game for modeling search in structured domains. In this game, one player tries to find a "bug" while the other tries to hide it. Both players exploit the structure of the "search" domain. Intuitively, this search game is a mathematical generalization of the well known binary search. The generalization is from searching over totally ordered sets to searching over more complex search domains such as trees, partial orders and general set systems. As there must be one row for every search strategy, and there are exponentially many ways to search even in very simple search domains, the game's matrix has exponential size ("space"). In this work we present two ways to reduce the space required to compute the Nash value (in pure strategies) of this game: • First we show that a Nash equilibrium in pure strategies can be computed by using a backward induction on the matrices of each "part" or sub structure of the search domain. This can significantly reduce the space required to represent the game. • Next, we show when general search domains can be represented as DAGs (Directed Acycliqe Graphs). As a result, the Nash equilibrium can be directly computed using the DAG. Consequently the space needed to compute the desired search strategy is reduced to O(n2) where n is the size of the search domain.


1987 ◽  
Vol 24 (02) ◽  
pp. 386-401 ◽  
Author(s):  
John W. Mamer

We consider the extension of optimal stopping problems to non-zero-sum strategic settings called stopping games. By imposing a monotone structure on the pay-offs of the game we establish the existence of a Nash equilibrium in non-randomized stopping times. As a corollary, we identify a class of games for which there are Nash equilibria in myopic stopping times. These games satisfy the strategic equivalent of the classical ‘monotone case' assumptions of the optimal stopping problem.


2009 ◽  
Vol 50 ◽  
Author(s):  
Sigutė Vakarinienė ◽  
Daina Sudžiūtė

The method for finding Nash equilibrium in three-person matrix game is introduced in this paper. Linear optimization model with binary variables for computation of equilibrium points in three-person matrix game is proposed.


Sign in / Sign up

Export Citation Format

Share Document