scholarly journals Assessment of genetic diversity of different tomato genotypes using RAPD markers

2019 ◽  
Vol 29 (4) ◽  
pp. 276-283
Author(s):  
M Paul ◽  
SR Saha

The present investigation was carried out for assessment of genetic diversity among the 28 tomato genotypes though three random amplified polymorphic DNA (RAPD) markers. A total of 15 distinct DNA fragments ranging form 100-1000 bp were amplified by using three selected primers of which 5.00 polymorphic bands per primer and over all polymorphic loci was 100 percent. The extent of genetic diversity among these genotypes was computed through parameters of genetic diversity and Shanon’s information indices. The highest genetic distance was observed among the accession Cl-3d-0-99 (V93)  vs. F1 (G X V12), F1 (G X V17), F1 (G X V29) and  Durch fuegel  (G) vs. F1 (G X V17) and F1 (G X V93) vs. F1 (G X V12), F1 (G X V17), while the lowest genetic distance was observed among the accessions Fut. Wed Abrid (V94) vs. Sunlight pole (V67) and F1 (V67 X VG) vs. F1 (V17 X VG), F1 (V93 X VG) and F1 (V93 X V17) vs. F1 (V17 X VG), F1 (V67 X VG), F1 (V93 X VG). The Unweighted Pair Group Method of Arithmetic Mean (UPGMA) dendrogram based on Nei’s genetic distance divided the genotypes into two main clusters: A & B. Cluster ‘A’ consists of 19 accessions and cluster ‘B’ consists of 9 accessions. The information generated from this study could be useful in gene mapping and marker assisted breeding for future tomato breeding programs. Progressive Agriculture 29 (4): 276-283, 2018

1970 ◽  
Vol 34 (3) ◽  
pp. 493-503 ◽  
Author(s):  
KK Ghosh ◽  
ME Haque ◽  
S Parvin ◽  
F Akhter ◽  
MM Rahim

This investigation was aimed at exploring the genetic diversity and relationship among nine Brassica varieties, namely BARI Sharisha-12, Agrani, Sampad, BINA Sharisha-4, BINA Sharisha-5, BARI Sharisha-13, Daulot, Rai-5, Alboglabra using Random Amplified Polymorphic DNA (RAPD) markers. In total, 59 reproducible DNA bands were generated by four arbitrary selected primers of which 58 (98.03%) bands were proved to be polymorphic. These bands ranged from 212 to 30686 bp in size. The highest proportion of polymorphic loci and gene diversity values were 37.29% and 0.1373, respectively, for BARI Sharisha-12 and the lowest proportion of polymorphic loci and gene diversity values were 8.47% and 0.0318, 8.47% and 0.0382 for BINA Sharisha-4 and Rai-5, respectively. A dendrogram was constructed using unweighted pair group method of arithmetic mean (UPGMA). The result of cluster analysis indicated that the 9 accessions were capable of being classified into 2 major groups. One group consists of BARI Sharisha-12, Agrani, Sampad, Daulot, Rai-5, Alboglabra. where Daulot and Rai-5 showed the lowest genetic distance of 0.049. And another group contains BINA Sharisha-4, BINA Sharisha-5, and BARI Sharisha-1 3, where BINA Sharisha-5 and BARI sharisha-13 showed genetic distance of 0.071. Key Words: RAPD, Brassica, genetic distance, polymorphic band. DOI: 10.3329/bjar.v34i3.3976 Bangladesh J. Agril. Res. 34(3) : 493-5032, September 2009


2019 ◽  
Vol 6 (2) ◽  
pp. 215-225
Author(s):  
Nazmul Islam Mazumder ◽  
Tania Sultana ◽  
Prtitish Chandra Paul ◽  
Dinesh Chandra Roy ◽  
Deboprio Roy Sushmoy ◽  
...  

Twenty six rice lines of PBRC (salt tolerant line-20) × BRRI dhan-29 were used to evaluate salinity tolerance at the seedling stage and tested for salt tolerance using RAPD markers. Salinity screening was done using hydrophonic system at the greenhouse following IRRI standard protocol. Among the studied line, ten were moderately salinity tolerant, nine susceptible and rest of the lines highly susceptible. For assessing genetic diversity and relationship of F3 rice lines including two parents were tested against PCR-based Random Amplified Polymorphic DNA (RAPD) technique using three arbitrary decamer primers; OPA02, OPC01, and OPC12. Selected three primers generated a total of 14 bands. Out of 14 bands, 12 bands (86.67%) were polymorphic and 2 bands (13.33%) were monomorphic. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei’s (1972) genetic distance produced 2 main clusters of the 28 rice genotypes. Most of the moderately tolerant lines and PBRC (STL-20) (tolerant variety) were grouped in same cluster due to lower genetic distance, while maximum susceptible along with BRRI dhan29 (susceptible variety) showed higher genetic distance with PBRC (STL-20) and moderately tolerant lines. This result indicates that the lines which formed grouped together, they are less diversed. On the other hand the lines remain in different clusters or different groups, are much diversed. Thus RAPD perform a potentially simple, rapid and reliable method to evaluate genetic diversity and molecular characterization as well. Res. Agric., Livest. Fish.6(2): 215-225, August 2019


2012 ◽  
Vol 22 (1) ◽  
pp. 51-58 ◽  
Author(s):  
M.E. Hoque ◽  
M.M. Hasan

Random Amplified Polymorphic DNA (RAPD) markers were used to study the molecular genetic diversity analysis among six BARI released lentil varieties viz. BARI masur-1, BARI masur-2, BARI masur-3, BARI masur-4, BARI masur-5 and BARI masur-6. PCR amplified products were visualized on 1.0% agarose gel and the band for each primer were scored. Ten RAPD markers were used in this study. Out of them 7 primers showed amplification of 53 DNA fragments with 60.37% of them being polymorphic. The highest number of polymorphic loci was noticed in the variety BARI masur-3. The same variety also showed maximum Nei’s gene diversity value (0.0552). The highest Nei’s genetic distance (0.5002) was observed in BARI masur-1 vs. BARI masur-5 whereas, the lowest genetic distance (0.0692) was found in BARI masur-1 vs. BARI masur-2. The unweighted pair group method of arithmetic mean (UPGMA) dendrogram based on Nei’s genetic distance grouped the six cultivars into two main clusters. BARI masur-1, BARI masur-2 and BARI masur-3 were in cluster I and BARI masur-4, BARI masur-5 and BARI masur-6 were in cluster II. The cultivar BARI masur-4 was closest to the cultivar BARI masur-6 with the lowest genetic distance (0.0972) and the highest genetic distance (0.5002) was found between BARI masur-1 and BARI masur-5. The RAPD markers were found to be useful in molecular characterization of lentil varieties which could be utilized by the breeders for the improvement of lentil cultivars. DOI: http://dx.doi.org/10.3329/ptcb.v22i1.11260 Plant Tissue Cult. & Biotech. 22(1): 51-58, 2012 (June)


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 613-619 ◽  
Author(s):  
Ghazal Baziar ◽  
Moslem Jafari ◽  
Mansoureh Sadat Sharifi Noori ◽  
Samira Samarfard

Ficus carica L. is one of the most ancient fruit trees cultivated in Persia (Iran). The conservation and characterization of fig genetic resources is essential for sustainable fig production and food security. Given these considerations, this study characterizes the genetic variability of 21 edible F. carica cultivars in the Fars Province using random amplified polymorphic DNA (RAPD) markers. The collected cultivars were also characterized for their morphological features. A total of 16 RAPD primers produced 229 reproducible bands, of which, 170 loci (74.43%) were polymorphic with an average polymorphic information content (PIC) value of 0.899. Genetic analysis using an unweighted pair-group method with arithmetic averaging (UPGMA) revealed genetic structure and relationships among the local germplasms. The dendrogram resulting from UPGMA hierarchical cluster analysis separated the fig cultivars into five groups. These results demonstrate that analysis of molecular variance allows for the partitioning of genetic variation between fig groups and illustrates greater variation within fig groups and subgroups. RAPD-based classification often corresponded with the morphological similarities and differences of the collected fig cultivars. This study suggests that RAPD markers are suitable for analysis of diversity and cultivars’ fingerprinting. Accordingly, understanding of the genetic diversity and population structure of F. carica in Iran may provide insight into the conservation and management of this species.


2009 ◽  
Vol 52 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Athanasios L. Tsivelikas ◽  
Olga Koutita ◽  
Anastasia Anastasiadou ◽  
George N. Skaracis ◽  
Ekaterini Traka-Mavrona ◽  
...  

In this work, the part of the squash core collection, maintained in the Greek Gene Bank, was assessed using the morphological and molecular data. Sixteen incompletely classified accessions of the squash were characterized along with an evaluation of their resistance against two isolates of Fusarium oxysporum. A molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers was also performed, revealing high level of polymorphism. To study the genetic diversity among the squash accessions, a clustering procedure using Unweighed Pair Group Method and Arithmetic Average (UPGMA) algorithm was also adopted. Two independent dendrograms, one for the morphophysiological and one for molecular data were obtained, classifying the accessions into two and three main clusters, respectively. Despite the different number of the clusters there were many similarities between these two dendrograms, and a third dendrogram resulting from their combination was also produced, based on Gower's distance and UPGMA clustering algorithm. In order to determine the optimal number of clusters, the upper tail approach was applied. The more reliable clustering of the accessions was accomplished using RAPD markers as well as the combination of the two different data sets, classifying the accessions into three significantly different groups. These groups corresponded to the three different cultivated species of C. maxima Duch., C. moschata Duch., and C. pepo L. The same results were also obtained using Principal Component Analysis.


2015 ◽  
Vol 5 (3) ◽  
pp. 728-731
Author(s):  
Ziyad A. Abed

 A field experiments was conducted in greenhouse to determinate the genetic diversity among 7 genotypes from maize(4 inbreds and 3hybrids) by using molecular markers with Random Amplified polymorphic DNA(RAPD),that shown high level of polymorphism among genotypes of maize ,where the percentage of polymorphism ranged from(66%) and (83.33%) the highest number of polymorphism band (16) and size fragment ranged between (3800 bp) with the primer ( Bnlg 1185 ) and the lowest 180 with the primer( Bnlg 1464).The genetic distance value ranged between (0.3451) and (0.6534) ,where the lowest genic distance between (k1 and k2),while the highest genetic distance between(k4) and (k3xk4).In this study RAPD markers were shown to be powerful to detect genetic diversity and provided us high polymorphism values within genotypes of maize ,also we can conclude for useful those primers for genetic studies in plant breeding programs for developing synthetic cultivars or improved inbreds of maize. 


2018 ◽  
Vol 5 (2) ◽  
pp. 77
Author(s):  
Budi Martono ◽  
Syafaruddin Syafaruddin

<em>Knowing the genetic diversity in the tea germplasms collection is one of important conditions for assembling new superior varieties. Information of genetic diversity can be obtained through analysis using RAPD molecular markers. The study aimed to determine the genetic diversity of 21 tea genotypes based on RAPD markers. The research was conducted in Integrated Laboratory, Seameo Biotrop, Bogor, from July to September 2013. Genomic DNA was isolated from 21 tea genotypes leaf samples, then amplified with primer OPA 03, OPA 05, OPB 04, OPB 06, OPC 06, and OPD 08. Electrophoresis result was converted into binary data. The genetic similarity and cluster analysis calculation was done using NTSYS-pc version 2.10. In this research, 50 polymorphic bands (94,34%) and 3 monomorphic band (5,66%) were obtained. Cluster analysis based on Nei's genetic distance using the unweighted pair-group method with arithmatic (UPGMA) divided 21 tea genotypes into two groups at a genetic similarity value of 0,48. Group 1 consisted of 20 tea genotypes, while the second group comprised only a one genotype (Sin 27). The range of genetic similarity matrix was between 28%–92%, the lowest genetic similarity (28%) was found between GMB 4 and Sin 27 genotypes, while the highest (92%) was found between AS 2 and AS 1 genotypes. The information obtained can be utilized in breeding programs with the support of agronomic characters as well as in the conservation of tea germplasm.</em>


2003 ◽  
Vol 128 (5) ◽  
pp. 741-746 ◽  
Author(s):  
N. Nikoloudakis ◽  
G. Banilas ◽  
F. Gazis ◽  
P. Hatzopoulos ◽  
J. Metzidakis

Random amplified polymorphic DNA (RAPD) markers were used to study the genetic diversity and to discriminate among 33 Greek olive (Olea europaea L.) cultivars. Three feral forms from Crete and five foreign cultivars recently introduced into Greece were also included. Nineteen primers were selected which produced 64 reproducible polymorphic bands in the 41 olive genotypes studied, with an average of 3.4 informative markers per primer. The RAPD markers resulted in 135 distinct electrophoretic patterns, with an average of 7.1 patterns per primer. Based on either unique or combined patterns, all genotypes could be identified. Genetic similarities between genotypes were estimated using the Dice similarity index and these indicated that a high degree of diversity exists within the Greek olive germplasm. Using the unweighted pair-group method (UPGMA) most cultivars were clustered into two main groups according to their fruit size or commercial use (table or olive oil). However, poor correlation was detected between clustering of cultivars and their principal area of cultivation. RAPD marker data were subjected to nonmetric multidimentional scaling (NMDS) which produced results similar to those of the UPGMA analysis. The results presented here contribute to a comprehensive understanding of cultivated Greek olive germplasm and provide information that could be important for cultural purposes and breeding programs.


2014 ◽  
Vol 11 (2) ◽  
pp. 95-102 ◽  
Author(s):  
ME Hoque ◽  
H Huq ◽  
NJ Moon

Random Amplified Polymorphic DNA (RAPD) markers were used to study the molecular diversity of 12 popular potato varieties in Bangladesh. DNA was extracted from tender leaf sample for PCR amplification. The PCR amplified DNA profile was visualized on 2% agarose gel, staining with ethidium bromide. Eight RAPD primers were used to evaluate the genetic diversity of potato varieties. Some total of 36 DNA fragments were amplified and out of them 24 were polymorphic. Those primers generated 61.53% of polymorphic DNA band. The primer OPX 04 produced highest (9) number of DNA band and out of 9 amplicon 6 were polymorphic. Lowest number of amplification was observed in the primer OPA-17 and it was only 3. The highest Nei’s genetic distance (0.9701) was noticed between the variety Granola and Provinto. The highest (0.8205) number of genetic identity/similarity was observed between the varieties Cardinal and Diamant. The unweighted pair group method of arithmetic mean (UPGMA) dendrogram based on Nei’s genetic distance revealed that the 12 varieties followed into two main clusters. The present finding showed that there was high level of genetic diversity among the varieties which can be used for parental selection in potato breeding program. DOI: http://dx.doi.org/10.3329/sja.v11i2.18405 SAARC J. Agri., 11(2): 95-102 (2013)


2019 ◽  
Vol 32 (1) ◽  
pp. 81-91
Author(s):  
Jorge Xavier de Almeida Neto ◽  
Mailson Monteiro do Rêgo ◽  
Elizanilda Ramalho do Rêgo ◽  
Ana Paula Gomes da Silva

ABSTRACT Brave bean (Capparis flexuosa L.) is a Caatinga species that is used as forage, mainly during the dry season when some plant species lose their leaves. The aim of this study was to assess genetic diversity within and among brave bean populations using Random Amplified Polymorphic DNA (RAPD) markers. Brave bean leaves were collected from 30 accessions in the following municipalities of Paraíba state, Brazil: Barra de Santa Rosa (BSR), Cuité (C), São João do Cariri (SJC), Damião (D), Baraúna (B), and Picuí (P). DNA extraction followed the standard methodology of CTAB with modifications. RAPD analyses were carried out using 18 primers, and polymorphism of the amplified DNA fragments was visualized using agarose gel electrophoresis. Data were used to calculate Jaccard Similarity Coefficient values, which were then used to group samples with the Unweighted Pair Group Method with Arithmetic Mean. Cophenetic Correlation Coefficient, Stress, and Distortion Coefficient values were also calculated from these analyses. Band polymorphism was generated with 14 primers, but the sampled populations showed low numbers of polymorphic loci (27 in BSR, 18 in C, 7 in SJC, 9 in D, and 0 in B and P). The highest polymorphic information content was found in samples from the BSR (9 groups), C (22 groups), SJC (7 groups), and D (6 groups) municipalities. In the interpopulation analysis, 34 groups were formed, the matrices of which showed high cophenetic correlations (0.95 to 0.98), but low stress (12.9 to 17.45%) and distortion (3.05%). Therefore, results showed that there was genetic variability both among and within brave bean populations.


Sign in / Sign up

Export Citation Format

Share Document