scholarly journals Naive bayes algorithm performance for smartphone sentiment analysis in social media

Author(s):  
Monalisa Fatmawati Sarifah

Indonesia with a population of 250 million is a large market, Millennials tend to be more adaptive to the development of communication technology [1]. There are lot of opportunities that are used by various groups, one of which is the need to use smartphones that can make it easier for people to exchange information [2].  The shift in sales of smartphone brands in Indonesia is influenced by  massive advertising carried out by smartphone vendors (smartphone capitalists) to consumers [3]. The enthusiasm of the community in welcoming this platform is so great, lot of comment about smartphone brand stated by public is an interesting thing to be processed to be information. Utilization of that information requires analytical techniques so that the produced information can help many parties. The method used in this study is Naïve Bayes classification method which is a learning technique for data mining algorithms that uses probability and statistical methods [4]. This method is used to classify comments given by the community to smartphone brands. The comments given in this application will later be classified into positive, negative, and neutral comments. The purpose of this study was to find out how much positive, negative and neutral comments the community gave to smartphone brands, so that later it would facilitate the smartphone brand in providing policies or development in the future.

2017 ◽  
Vol 1 (1) ◽  
pp. 48
Author(s):  
Rinawati Rinawati

Bad credit is one of the credit risk faced by the financial and banking industry. Bad credit can be avoided by means of an accurate credit analysis of the debtor. The accuracy of credit ratings is crucial to the profitability of financial institutions. Improved accuracy of credit ratings can be done by doing the selection of attributes, because the selection of attributes reduce the dimensionality of the data so that operation of the data mining algorithms can be run more effectively and more cepat.Banyak research has been conducted to determine credit ratings. One of the methods most widely used method of Naive Bayes. In this study will be used method Naive Bayes and will do the selection of attributes by using particle swarm optimization to determine credit ratings. After testing the results obtained are Naive Bayes produce accuracy value of 72.40% and AUC value of 0.765. Then be optimized by using particle swarm optimization results show values higher accuracy is equal to 75.90% and AUC value of 0.773. So as to achieve the increased accuracy of 3.5%, and increased the AUC of 0.008. By looking at the accuracy and AUC values, the Naive Bayes algorithm based on particle swarm optimization into the classification category enough.


2020 ◽  
Vol 1641 ◽  
pp. 012068
Author(s):  
Diah Puspitasari ◽  
Kresna Ramanda ◽  
Adi Supriyatna ◽  
Mochamad Wahyudi ◽  
Erma Delima Sikumbang ◽  
...  

2018 ◽  
Vol 7 (3.4) ◽  
pp. 13
Author(s):  
Gourav Bathla ◽  
Himanshu Aggarwal ◽  
Rinkle Rani

Data mining is one of the most researched fields in computer science. Several researches have been carried out to extract and analyse important information from raw data. Traditional data mining algorithms like classification, clustering and statistical analysis can process small scale of data with great efficiency and accuracy. Social networking interactions, business transactions and other communications result in Big data. It is large scale of data which is not in competency for traditional data mining techniques. It is observed that traditional data mining algorithms are not capable for storage and processing of large scale of data. If some algorithms are capable, then response time is very high. Big data have hidden information, if that is analysed in intelligent manner can be highly beneficial for business organizations. In this paper, we have analysed the advancement from traditional data mining algorithms to Big data mining algorithms. Applications of traditional data mining algorithms can be straight forward incorporated in Big data mining algorithm. Several studies have analysed traditional data mining with Big data mining, but very few have analysed most important algortihsm within one research work, which is the core motive of our paper. Readers can easily observe the difference between these algorthithms with  pros and cons. Mathemtics concepts are applied in data mining algorithms. Means and Euclidean distance calculation in Kmeans, Vectors application and margin in SVM and Bayes therorem, conditional probability in Naïve Bayes algorithm are real examples.  Classification and clustering are the most important applications of data mining. In this paper, Kmeans, SVM and Naïve Bayes algorithms are analysed in detail to observe the accuracy and response time both on concept and empirical perspective. Hadoop, Mapreduce etc. Big data technologies are used for implementing Big data mining algorithms. Performace evaluation metrics like speedup, scaleup and response time are used to compare traditional mining with Big data mining.  


2018 ◽  
pp. 90-102
Author(s):  
Matheus Varela Ferreira ◽  
Francisco Assis da Silva ◽  
Leandro Luiz de Almeida ◽  
Danillo Roberto Pereira

With the increasing need to make decisions in the short term, industry (pharmaceutical, petrochemical, aeronautics and etc.) has been seeking new ways to reduce the time of the data mining process to obtain knowledge. In recent years, many technological resources are being used to mitigate this need, an example is CUDA. CUDA is a platform that enables the use of GeForce GPUs in conjunction with CPUs for data processing, significantly reducing processing time. This work proposes to perform a comparative analysis of the processing time between two versions of some data mining algorithms (Apriori, AprioriAll, Naïve Bayes and K-Means), one running on CPU only and one on CPU in conjunction with GPU through platform CUDA. Through the experiments performed, it was observed that using the CUDA platform it is possible to obtain satisfactory results.


Author(s):  
Delisman Laia ◽  
Efori Buulolo ◽  
Matias Julyus Fika Sirait

PT. Go-Jek Indonesia is a service company. Go-jek online is a technology-based motorcycle taxi service that leads the transportation industry revolution. Predictions on ordering go-jek drivers using data mining algorithms are used to solve problems faced by the company PT. Go-Jek Indonesia to predict the level of ordering of online go-to drivers. In determining the crowded and lonely time. The proposed method is Naive Bayes. Naive Bayes algorithm aims to classify data in certain classes. The purpose of this study is to look at the prediction patterns of each of the attributes contained in the data set by using the naive algorithm and testing the training data on testing data to see whether the data pattern is good or not. what will be predicted is to collect the data of the previous driver ordering, which is based on the day, time for one month. The Naive Bayes algorithm is used to predict the ordering of online go-to-go drivers that will be experienced every day by seeing each order such as morning, afternoon and evening. The results of this study are to make it easier for the company to analyze the data of each go-jek driver booking in taking policies to ensure that both drivers and consumers or customers.Keywords: Go-jek Driver, Data Mining, Naive Bayes


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mahmoud Hajipour ◽  
Niloufar Taherpour ◽  
Haleh Fateh ◽  
Ebrahim Yousefi ◽  
Koorosh Etemad ◽  
...  

Objectives: Reducing infant mortality in the whole world is one of the millennium development goals.The aim of this study was to determine the factors related to infant mortality using data mining algorithms. Methods: This population-based case-control study was conducted in eight provinces of Iran. A sum of 2,386 mothers (1,076 cases and 1,310 controls) enrolled in this study. Data were extracted from health records of mothers and filled with checklists in health centers. We employed several data mining algorithms such as AdaBoost classifier, Support Vector Machine, Artificial Neural Networks, Random Forests, K-nearest neighborhood, and Naïve Bayes in order to recognize the important predictors of infant death; binary logistic regression model was used to clarify the role of each selected predictor. Results: In this study, 58.7% of infant mortalities occurred in rural areas, that 55.6% of them were boys. Moreover, Naïve Bayes and Random Forest were highly capable of predicting related factors among data mining models. Also, the results showed that events during pregnancy such as dental disorders, high blood pressure, loss of parents, factors related to infants such as low birth weight, and factors related to mothers like consanguineous marriage and gap of pregnancy (< 3 years) were all risk factors while the age of pregnancy (18 - 35 year) and a high degree of education were protective factors. Conclusions: Infant mortality is the consequence of a variety of factors, including factors related to infants themselves and their mothers and events during pregnancy. Owing to the high accuracy and ability of modern modeling compared to traditional modeling, it is recommended to use machine learning tools for indicating risk factors of infant mortality.


2020 ◽  
Vol 4 (2) ◽  
pp. 362-369
Author(s):  
Sharazita Dyah Anggita ◽  
Ikmah

The needs of the community for freight forwarding are now starting to increase with the marketplace. User opinion about freight forwarding services is currently carried out by the public through many things one of them is social media Twitter. By sentiment analysis, the tendency of an opinion will be able to be seen whether it has a positive or negative tendency. The methods that can be applied to sentiment analysis are the Naive Bayes Algorithm and Support Vector Machine (SVM). This research will implement the two algorithms that are optimized using the PSO algorithms in sentiment analysis. Testing will be done by setting parameters on the PSO in each classifier algorithm. The results of the research that have been done can produce an increase in the accreditation of 15.11% on the optimization of the PSO-based Naive Bayes algorithm. Improved accuracy on the PSO-based SVM algorithm worth 1.74% in the sigmoid kernel.


Sign in / Sign up

Export Citation Format

Share Document