Sea surface fCO2 measurements in the Southern Ocean from CARIOCA Drifters during 2001-2007

Author(s):  
J. Boutin, ◽  
L. Merlivat,
Keyword(s):  
Tellus B ◽  
1999 ◽  
Vol 51 (2) ◽  
pp. 541-559 ◽  
Author(s):  
FERIAL LOUANCHI ◽  
MARIO HOPPEMA ◽  
DOROTHEE C. E. BAKKER ◽  
ALAIN POISSON ◽  
MICHEL H. C. STOLL ◽  
...  

2021 ◽  
Author(s):  
Frida Hoem ◽  
Suning Hou ◽  
Matthew Huber ◽  
Francesca Sangiorgi ◽  
Henk Brinkhuis ◽  
...  

<p>The opening of the Tasmanian Gateway during the Eocene and further deepening in the Oligocene is hypothesized to have reorganized ocean currents, preconditioning the Antarctic Circumpolar Current (ACC) to evolve into place. However, fundamental questions still remain on the past Southern Ocean structure. We here present reconstructions of latitudinal temperature gradients and the position of ocean frontal systems in the Australian sector of the Southern Ocean during the Oligocene. We generated new sea surface temperature (SST) and dinoflagellate cyst data from the West Tasman margin, ODP Site 1168. We compare these with other records around the Tasmanian Gateway, and with climate model simulations to analyze the paleoceanographic evolution during the Oligocene. The novel organic biomarker TEX<sub>86</sub>- SSTs from ODP Site 1168, range between 19.6 – 27.9°C (± 5.2°C, using the linear calibration by Kim et al., 2010), supported by temperate and open ocean dinoflagellate cyst assemblages. The data compilation, including existing TEX<sub>86</sub>-based SSTs from ODP Site 1172 in the Southwest Pacific Ocean, DSDP Site 274 offshore Cape Adare, DSDP Site 269 and IODP Site U1356 offshore the Wilkes Land Margin and terrestrial temperature proxy records from the Cape Roberts Project (CRP) on the Ross Sea continental shelf, show synchronous variability in temperature evolution between Antarctic and Australian sectors of the Southern Ocean. The SST gradients are around 10°C latitudinally across the Tasmanian Gateway throughout the early Oligocene, and increasing in the Late Oligocene. This increase can be explained by polar amplification/cooling, tectonic drift, strengthening of atmospheric currents and ocean currents. We suggest that the progressive cooling of Antarctica and the absence of mid-latitude cooling strengthened the westerly winds, which in turn could drive an intensification of the ACC and strengthening of Southern Ocean frontal systems.</p>


2014 ◽  
Vol 11 (12) ◽  
pp. 3279-3297 ◽  
Author(s):  
C.-H. Chang ◽  
N. C. Johnson ◽  
N. Cassar

Abstract. Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of one to two weeks and with six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This nonparametric approach is based entirely on the observed statistical relationships between NCP and the predictors and, therefore, is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published, independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November–March NCP climatology reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the Atlantic, Indian, and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, the Patagonian Shelf, the Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air–sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 17.9 mmol C m−2 d−1, falls within the range of 8.3 to 24 mmol C m−2 d−1 from other model estimates. A broad agreement is found in the basin-wide NCP climatology among various models but with significant spatial variations, particularly in the Patagonian Shelf. Our approach provides a comprehensive view of the Southern Ocean NCP climatology and a potential opportunity to further investigate interannual and intraseasonal variability.


2007 ◽  
Vol 20 (3) ◽  
pp. 436-448 ◽  
Author(s):  
Ronald J. Stouffer ◽  
Dan Seidov ◽  
Bernd J. Haupt

Abstract The response of an atmosphere–ocean general circulation model (AOGCM) to perturbations of freshwater fluxes across the sea surface in the North Atlantic and Southern Ocean is investigated. The purpose of this study is to investigate aspects of the so-called bipolar seesaw where one hemisphere warms and the other cools and vice versa due to changes in the ocean meridional overturning. The experimental design is idealized where 1 Sv (1 Sv ≡ 106 m3 s−1) of freshwater is added to the ocean surface for 100 model years and then removed. In one case, the freshwater perturbation is located in the Atlantic Ocean from 50° to 70°N. In the second case, it is located south of 60°S in the Southern Ocean. In the case where the North Atlantic surface waters are freshened, the Atlantic thermohaline circulation (THC) and associated northward oceanic heat transport weaken. In the Antarctic surface freshening case, the Atlantic THC is mainly unchanged with a slight weakening toward the end of the integration. This weakening is associated with the spreading of the fresh sea surface anomaly from the Southern Ocean into the rest of the World Ocean. There are two mechanisms that may be responsible for such weakening of the Atlantic THC. First is that the sea surface salinity (SSS) contrast between the North Atlantic and North Pacific is reduced. And, second, when freshwater from the Southern Ocean reaches the high latitudes of the North Atlantic Ocean, it hinders the sinking of the surface waters, leading to the weakening of the THC. The spreading of the fresh SSS anomaly from the Southern Ocean into the surface waters worldwide was not seen in earlier experiments. Given the geography and climatology of the Southern Hemisphere where the climatological surface winds push the surface waters northward away from the Antarctic continent, it seems likely that the spreading of the fresh surface water anomaly could occur in the real world. A remarkable symmetry between the two freshwater perturbation experiments in the surface air temperature (SAT) response can be seen. In both cases, the hemisphere with the freshwater perturbation cools, while the opposite hemisphere warms slightly. In the zonally averaged SAT figures, both the magnitude and the pattern of the anomalies look similar between the two cases. The oceanic response, on the other hand, is very different for the two freshwater cases, as noted above for the spreading of the SSS anomaly and the associated THC response. If the differences between the atmospheric and oceanic responses apply to the real world, then the interpretation of paleodata may need to be revisited. To arrive at a correct interpretation, it matters whether or not the evidence is mainly of atmospheric or oceanic origin. Also, given the sensitivity of the results to the exact details of the freshwater perturbation locations, especially in the Southern Hemisphere, a more realistic scenario must be constructed to explore these questions.


Mr President, ladies and gentlemen: it is my pleasure, in opening this two-day conference on the terrestrial Antarctic ecosystem, to welcome you as contributors of papers and, as I shall hope, participants in the discussions with which we will conclude each of the four sessions of our meeting. This symposium was first suggested and has, in very large measure, been organized by Dr Martin Holdgate whom we regretfully, but nevertheless most warmly congratulate on his recent translation from the post of Senior Biologist of the British Antarctic Survey to that of Deputy Director of the Nature Conservancy. The furtherance of Antarctic biology in recent years owes much to Dr Holdgate’s energetic and imaginative direction, and I am glad to have this opportunity of acknowledging our indebtedness to him for arranging this discussion. The Antarctic continent, half as large again as Australia, and the surrounding Southern Ocean, in area about one-fifth of the world’s sea surface were, by their very remoteness from the maritime nations of the northern hemisphere, late of exploration. But, while it is little more than 75 years since man first set foot on the Antarctic continent, the more accessible waters of the Southern Ocean have an appreciably longer history of exploration, dating from the pioneering voyages of Captain Cook some 200 years ago. Biological investigations in Antarctica were, therefore, for long concerned almost entirely with observations and studies of animals living in the open ocean or on the sea floor rather than with the terrestrial and freshwater floras and faunas of the continental margin and oceanic islands which, either because of difficulties of access or limitations of time imposed by ships’ programmes, were rarely surveyed in detail.


2020 ◽  
Author(s):  
Audrey Hasson ◽  
Cori Pegliasco ◽  
Jacqueline Boutin ◽  
Rosemary Morrow

<p>Since 2010, space missions dedicated to Sea Surface Salinity (SSS) have been providing observations with almost complete coverage of the global ocean and a resolution of about 45 km every 3 days. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission was the first orbiting radiometer to collect regular SSS observations from space. The Aquarius and SMAP (Soil Moisture Active-Passive) missions of the National Aeronautics and Space Administration (NASA) then reinforced the SSS observing system between mid-2011 and mid-2015 and since mid-2015, respectively.</p><p>Using the most recent SSS Climate Change Initiative project dataset merging data from the 3 missions, this study investigates the SSS signal associated with mesoscale eddies in the Southern Ocean. Eddies location and characteristics are obtained from the daily v3 mesoscale eddy trajectory atlas produced by CLS. SSS anomalies along the eddies journey are computed and compared to Sea Surface Temperature (SST) anomalies (v4 Remote Sensing Systems) as well as the SubAntarctic Front (SAF) position (CTOH, LEGOS). The vertical structure of the eddies is further investigated using profiles from colocated Argo autonomous floats.<span> </span></p><p>This study highlights a robust signal in SSS depending on both the eddies rotation (cyclone/anticyclone) and latitudinal position with respect to the SAF. Moreover, this dependence is not found in SST. These observations reveal oceanic the interaction of eddies with the larger scale ocean water masses. SSS and SST anomalies composites indeed show different patterns either bi-poles linked with horizontal stirring of fronts, mono-poles from trapping water or vertical mixing changes, or a mix of the two.</p><p>This analysis gives strong hints for the erosion of subsurface waters, such as mode waters, induced by enhanced mixing caused by the deep-reaching eddies of the southern ocean.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Jeferson Prietsch Machado ◽  
Flavio Justino ◽  
Luciano Ponzi Pezzi

The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO). The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.


Sign in / Sign up

Export Citation Format

Share Document