A Study on the Effect of Light Sources on the Colour of Objects

2020 ◽  
pp. 47-52
Author(s):  
Fatih Atalar ◽  
Kerim Uzun ◽  
Ahmet Gedikli ◽  
Aysel Ersoy Yilmaz ◽  
Mukden Ugur

Lighting is one of the basic aspects that eases our lives and increases its quality. We use lighting tools in many places such as homes, streets, work places, hospitals, factories, etc. In this study, the effects of the light source and the surface of the object on features like colour temperature, glare, colour (perceived) and dominant wavelength is analysed. Four light sources such as a warm white halogen lamp, warm white LED source and two cool white LED sources were used. In the light measurements, 10 paper surfaces and 8 cloth surfaces were selected as the surface type. Colours of the surfaces were selected among the main colours on the colour locus. Light, reflected from surface was recorded with Konica Minolta CS-200 model. All results were indicated and compared with each other.

2019 ◽  
Vol 213 ◽  
pp. 02021 ◽  
Author(s):  
Roman Formánek ◽  
Bohuš Kysela ◽  
Radek Šulc

Agitation of two immiscible liquids or solid-liquid suspension is a frequent operation in chemical and metallurgical industries. The sizes of particles, bubbles or droplets can be determined by the Image Analysis Technique. It is known that the quality of captured images depends significantly on the original image background that is mainly affected by the type of the light source. The aim of this contribution is to investigate the effect of light source type on image quality. The four types of light sources were tested: 1) 1000 W halogen lamp, 2) 72 W LED bar panel, 3) 60 W LED chip, and 4) 90 W LED chip. The illumination intensity and image background quality were investigated for each tested light sources. The effect of the shutter speed on evaluated particle sizes was tested using monodisperse spherical calibration particles having diameter of 1.19 mm. The difference observed between particle sizes evaluated by image analysis for given light source and declared calibration particle diameter was used as a measure of light source quality.


2006 ◽  
Vol 90 (11) ◽  
pp. 822-827 ◽  
Author(s):  
Hiroshi Takahashi ◽  
Takashi Irikura ◽  
Masahiro Toda ◽  
Takayoshi Moriyama

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ya Liu ◽  
Xiuxia Ren ◽  
Byoung Ryong Jeong

Adenophora triphylla(Thunb.) A.DC., a well-known herbaceous medicinal species, has been reported to protect against human obesity, cancer, and inflammation. Supplementary lighting is a practical strategy to improve crop quality, especially at a propagation stage. However, there has been no study available on the optimal supplementary light source for the commercial production ofA. triphyllaseedlings. In this study, plug seedlings were cultivated in a greenhouse for four weeks under an average daily light intensity of 490μmol·m−2·s−1PPFD coming from the sun and a supplemental lighting (16 h per day) at 120μmol·m−2·s−1PPFD provided by high pressure sodium (HPS), metal halide (MH), far-red (FR) light, white LED (red: green: blue = 2:4:3, LED-w), or mixed (red: green: blue = 4:1:4) LED (LED-mix). The results showed that LED-mix, with a higher percentage of red and blue light, substantially promoted seedling growth compared to other treatments by increasing stem diameter, biomass, specific leaf weight, and root to shoot ratio. The LED-mix also promoted accumulation of soluble sugar, starch, and chlorophyll in the tissue and increased contents of total phenols and flavonoids. Moreover, stomata density and pore area per leaf area under the LED-mix were remarkably greater than those under other treatments. Furthermore, the Western blot analysis revealed that the expression of photosynthetic protein, D1, was notably enhanced by the LED-mix as compared with other light sources. In addition, the LED-mix alleviated the oxidative damage of seedlings by improving enzymatic and nonenzymatic antioxidant systems. Collectively, these results suggest that the LED-mix was the optimal supplementary light source for the production of highest qualityA. triphyllaseedlings.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 306 ◽  
Author(s):  
Przemyslaw Tabaka ◽  
Pawel Rozga

The article presents the results of the studies concerning the influence of a light source installed in luminaire of opal sphere type on the light pollution effect of the night sky. It is known from literature reports that the effect of light pollution is influenced by the spectral distribution of light. Although the influence of the spectral distribution has been widely studied from different perspectives, there is still a need to study this phenomenon—for example, from the point of view of the spectral reflection properties of the ground, on which the lanterns are installed. Hence, the above-mentioned aspect was considered in the authors’ investigations. The luminaire considered has been equipped with 20 different light sources, including the latest generation of lamps (light-emitting diodes, LEDs) as well as the conventional ones. With respect to these light sources, the measurements of light distribution and spectral distribution of emitted radiation of the luminaire were performed. Having these measurement data, the simulations were carried out using the DIALux software, and the calculations were made using the specially prepared calculation tool. On the basis of the results obtained in this way this was stated that the type of light source installed in the luminaire has a significant effect on the sky glow. An important factor affecting light pollution is not only the value of the luminous flux emitted upward but also the spectral characteristics of the emitted radiation, the impact of which is most noticeable. The conclusions from the studies indicate the next steps in the analysis of the light pollution effect. These steps will be focused on extended analysis of LEDs as modern and developed light sources.


2019 ◽  
Vol 51 (5) ◽  
pp. 657-681 ◽  
Author(s):  
PR Boyce ◽  
JR Stampfli

Executive summary The two metrics traditionally used to quantify the colour properties of light sources are the correlated colour temperature and the CIE General Colour Rendering Index. With the arrival of LEDs as a major light source questions began to be asked about the merits of both of these metrics. The question asked about correlated colour temperature was how far should the chromaticity of a light source be allowed to depart from the Planckian locus before the light emitted could no longer be said to be white? A tolerance to such a departure ( Duv) already existed but now gathered much more attention. The questions asked about the CIE General Colour Rendering Index were more searching. The limitations of the CIE General Colour Rendering Index were explored and, as a result, several alternative approaches to quantifying the colour rendition properties of light sources were proposed. The most comprehensive approach was produced by the Illuminating Engineering Society of North America, first in its Technical Memorandum IES TM-30-15 and more recently in its revision, Technical Memorandum ANSI/IES TM-30-18, which has been accepted as an American Standard. Both these documents describe a system that contains two high-level summary metrics: One for the average fidelity, i.e. how accurately a test light source renders 99 colour samples relative to how they are rendered under a reference illuminant, and the other for the average colourfulness, i.e. the overall increase or decrease in colourfulness of the same colour samples under the same test light source compared to the same reference illuminant. Associated with these overall average metrics are a number of more detailed metrics and graphical presentations. These aim to quantify and illustrate the variations in fidelity and the direction and magnitude of the shifts in chroma and hue around the hue circle. Compared to the CIE General Colour Rendering Index or the CIE Fidelity Index, a metric published by the CIE in 2017, ANSI/IES TM-30-18 provides a more comprehensive approach to quantifying and understanding the effects of light source spectrum on the perception of colour. Unfortunately, the new colour metrics described in IES TM-30-15 and ANSI/IES TM-30-18 have not yet been accepted by the CIE. Despite this, some light source manufacturers have started to provide information on their products expressed in terms of the ANSI/IES TM-30-18 colour metrics and designers are beginning to request them. The expectation is that, eventually, the ANSI/IES TM-30-18 metrics will be adopted by many countries and authorities, because they provide a much more comprehensive description of the colour properties of a light source than the CIE General Colour Rendering Index. This will be of value to light source manufacturers and lighting designers as well as those who prepare lighting codes and guides. It is expected that in the future the minimum set of data considered acceptable for describing the colour properties of a light source are likely to be the correlated colour temperature and the associated Duv value, the CIE Fidelity Index or the matching ANSI/IES TM-30-18 Fidelity Index, together with the ANSI/IES TM-30-18 Gamut Index and the ANSI/IES TM-30-18 Colour Vector Graphic.


2021 ◽  
Author(s):  
J.A. Veitch ◽  
L.A. Whitehead

The higher the colour fidelity of a light source, the lower its luminous efficacy of radiation because the light source spectrum must deviate from V(λ) to deliver the higher fidelity. Two experiments probed the trade-off between energy efficiency and colour quality. Experiment 1 required participants to simultaneously view pairs of light sources differing in colour fidelity, at either a higher (346 lx) or lower (277 lx) illuminance. Participants performed a timed reading task and judged the colour appearance of the pair. There were no effects of illuminance, but larger colour fidelity differences between the light sources in the pair correlated with lower appearance judgements. Experiment 2 simulated the effect of light sources on defined reflectance spectra. The results showed that improvements of colour fidelity above what is often considered satisfactory can yield more satisfying illumination while using the same amount of power.


2020 ◽  
pp. 28-46
Author(s):  
Deepak ◽  
Shubham Srivastava ◽  
C. S. Malvi

Solar energy has certain limitations such as seasonal variations, cloudy weather etc. Because of these limitations, it is very difficult to perform the experiments in Rainy and winters seasons. To tackle this problem, we have to use solar simulators. It is source of artificial lights, very much similar to concentrated sunlight. It can be analyzed that increased demand in manufacturing and development of solar simulators for testing and simulation of solar photovoltaic and solar thermal energy utilization. This paper reviews the solar simulator light sources for testing photovoltaic panels as well as for thermal applications. Light intensity, cost, durability and stability were included as a criterion for comparing solar spectrum with lamp wavelength spectrum. The classification of solar simulator depend on the light source application and their technological innovations were considered according to the literature. Also, carbon arc lamp, argon lamp, high pressure sodium lamps, quartz tungsten halogen lamp, mercury xenon lamps, xenon arc lamps, metal halide lamps, LEDs and super continuum laser are discussed in details. Also, multi light source solar simulator discussed as a separate topic.


2019 ◽  
Vol 52 (1) ◽  
pp. 36-63
Author(s):  
L Bellia ◽  
F Fragliasso ◽  
E Stefanizzi

This paper presents an experiment on the effect of light on the perception of paintings. The experiment was performed in a test-room where a typical museum exhibition set-up was simulated. Two different paintings were shown to 44 participants, under different light scenes obtained by using tuneable LED (Light Emitting Diode) wallwashers. To set the light scenes, the following parameters were modified: correlated colour temperature of the lighting, illuminance on the painting and the colour of the background wall. Participants answered a questionnaire to assess the perception of the paintings’ colours, the lighting conditions and the pleasantness of the exhibition set-up. The results demonstrated that illuminance is the parameter mainly affecting perception, for both paintings. However, correlated colour temperature and wall colour, as well as the combination of the three different considered parameters, can more or less influence perception depending on the chromatic composition of the painting.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Snjezana Soltic ◽  
Andrew N. Chalmers

The purpose of this investigation is to quantify the influence of the peak wavelength shifts in commercially available LEDs on the characteristics of the mixed-LED white-light sources. For this purpose, a tetrachromatic spectrum was optimized and then subjected to deviations in the peak wavelengths. A total of 882 combinations of peak wavelength values were evaluated, and the results are reported in terms of correlated colour temperature, colour-rendering properties, and radiant luminous efficacy. The results show that there can be significant changes in the characteristics of the source under these conditions. Such changes are highly likely to present problems when dealing with applications where an effective and accurate white-light source is important.


2020 ◽  
Vol 1 (2) ◽  
pp. 22-23
Author(s):  
Rafika Andari

Abstrak Objektif. Penggunaan sel surya silikon saat ini masih tergolong mahal serta juga menggunakan bahan kimia yang berbahaya pada proses pembuatannya. Oleh karena itu perlu dikembangkan sel surya alternatif yang berbahan dasar murah dan ramah lingkungan, seperti DSSC (Dye Sensitized Solar Cell). Penggunaan DSSC sangat bagus dikembangkan dikarenakan proses pembuatan yang sederhana, biaya murah serta berbahan dasar organik.. Berdasarkan hal tersebut, perlu adanya pengembangan DSSC menggunakan dye dari ekstrak antosianin dari bahan alam yang banyak terdapat dilingkungan.  Material and Metode. Penelitian ini bertujuan mengetahui karakteristik DSSC menggunakan ekstrak bunga rosella dengan variasi jarak sumber cahaya terhadap DSSC. Karakteristik yang diukur adalah nilai arus dan tegangan serta efisiensi sel.  Sebagai sumber cahaya digunakan adalah lampu halogen 150 watt. Sumber cahaya diletakkan pada jarak 10 cm, 20 cm dan 30 cm. Hasil. Karakterisasi nilai tegangan dan arus DSSC menggunakan cahaya lampu halogen dengan jarak 10 cm terhadap DSSC lebih besar dibandingkan dengan jarak 20 cm dan 30 cm. Hasil pengujian menunjukkan bahwa efisiensi sel yang berjarak 10 cm terhadap DSSC merupakan hasil terbaik arus maksimal (Imax) 0,08 mA, tegangan maksimal (Vmax) 121,7 mV. Kesimpulan. Kinerja dari DSSC dipengaruhi oleh jarak sumber cahaya yang digunakan terhadap sel. Perbedaan nilai efisiensi ini disebabkan oleh besar intensitas cahaya terhadap sel, semakin dekat jarak sumber cahaya semakin besar intensitas cahaya sehingga menghasilkan nilai efisiensi yang besar. Abstrack Objective. The use of silicon solar cells is still relatively expensive and also uses harmful chemicals in the manufacturing process. Therefore it is necessary to develop alternative solar cells that are based on inexpensive and environmentally friendly, such as DSSC (Dye-Sensitized Solar Cell). The use of DSSC is very well prepared because of the simple manufacturing process, low cost, and organic-based. Based on this, the development of DSSC requires the use of dye from anthocyanin extracts from natural materials that are widely available in the environment. Materials and Methods. This study aims to determine the characteristics of DSSC using rosella flower extracts with variations in the distance of the light source to DSSC. The trademarks measured are current and voltage values ​​and cell efficiency. As the light source used is a 150-watt halogen lamp. Light sources are placed at a distance of 10 cm, 20 cm, and 30 cm. Results. Characterization of DSSC voltage and current values ​​using a halogen lamp with a distance of 10 cm to DSSC is more significant than a length of 20 cm and 30 cm. The test results show that the efficiency of cells within 10 cm of DSSC is the best result of maximum current (Imax) of 0.08 mA, maximum voltage (Vmax) of 121.7 mV. Conclusion. The performance of DSSC is influenced by the distance of the light source used against the cell. This difference in efficiency value is caused by the higher intensity of the light to the battery, the closer the distance of the light source, the higher the depth of the sun to produce an immense efficiency value.


Sign in / Sign up

Export Citation Format

Share Document