Light sources selection for solar simulators: A review

2020 ◽  
pp. 28-46
Author(s):  
Deepak ◽  
Shubham Srivastava ◽  
C. S. Malvi

Solar energy has certain limitations such as seasonal variations, cloudy weather etc. Because of these limitations, it is very difficult to perform the experiments in Rainy and winters seasons. To tackle this problem, we have to use solar simulators. It is source of artificial lights, very much similar to concentrated sunlight. It can be analyzed that increased demand in manufacturing and development of solar simulators for testing and simulation of solar photovoltaic and solar thermal energy utilization. This paper reviews the solar simulator light sources for testing photovoltaic panels as well as for thermal applications. Light intensity, cost, durability and stability were included as a criterion for comparing solar spectrum with lamp wavelength spectrum. The classification of solar simulator depend on the light source application and their technological innovations were considered according to the literature. Also, carbon arc lamp, argon lamp, high pressure sodium lamps, quartz tungsten halogen lamp, mercury xenon lamps, xenon arc lamps, metal halide lamps, LEDs and super continuum laser are discussed in details. Also, multi light source solar simulator discussed as a separate topic.

2020 ◽  
pp. 47-52
Author(s):  
Fatih Atalar ◽  
Kerim Uzun ◽  
Ahmet Gedikli ◽  
Aysel Ersoy Yilmaz ◽  
Mukden Ugur

Lighting is one of the basic aspects that eases our lives and increases its quality. We use lighting tools in many places such as homes, streets, work places, hospitals, factories, etc. In this study, the effects of the light source and the surface of the object on features like colour temperature, glare, colour (perceived) and dominant wavelength is analysed. Four light sources such as a warm white halogen lamp, warm white LED source and two cool white LED sources were used. In the light measurements, 10 paper surfaces and 8 cloth surfaces were selected as the surface type. Colours of the surfaces were selected among the main colours on the colour locus. Light, reflected from surface was recorded with Konica Minolta CS-200 model. All results were indicated and compared with each other.


2019 ◽  
Vol 213 ◽  
pp. 02021 ◽  
Author(s):  
Roman Formánek ◽  
Bohuš Kysela ◽  
Radek Šulc

Agitation of two immiscible liquids or solid-liquid suspension is a frequent operation in chemical and metallurgical industries. The sizes of particles, bubbles or droplets can be determined by the Image Analysis Technique. It is known that the quality of captured images depends significantly on the original image background that is mainly affected by the type of the light source. The aim of this contribution is to investigate the effect of light source type on image quality. The four types of light sources were tested: 1) 1000 W halogen lamp, 2) 72 W LED bar panel, 3) 60 W LED chip, and 4) 90 W LED chip. The illumination intensity and image background quality were investigated for each tested light sources. The effect of the shutter speed on evaluated particle sizes was tested using monodisperse spherical calibration particles having diameter of 1.19 mm. The difference observed between particle sizes evaluated by image analysis for given light source and declared calibration particle diameter was used as a measure of light source quality.


Crystals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 394 ◽  
Author(s):  
Fu-Ming Tzu ◽  
Jung-Hua Chou

Light sources tend to affect images captured in any automatic optical inspection (AOI) system. In this study, the effectiveness of metal-halide lamps, quartz-halogen lamps, and LEDs as the light sources in AOI systems for the detection of the third and fourth layers electrodes of thin-film-transistor liquid crystal displays (TFT-LCDs) is examined experimentally. The results show that the performance of LEDs is generally comparable or better than that of metal-halide and quartz-halogen lamps. The best optical performance is by the blue LED due to its spectrum compatibility with the time-delay-integration charged-coupled device (TDI CCD) sensor and its better spatial resolution. The images revealed by the blue LED are sharper and more distinctive. Since current LEDs are more energy efficient and environmentally friendly, using LEDs as the light source for AOI is very beneficial. As the blue LED performs the best, it should be adopted for AOI using TDI CCD sensors.


2020 ◽  
Vol 1 (2) ◽  
pp. 22-23
Author(s):  
Rafika Andari

Abstrak Objektif. Penggunaan sel surya silikon saat ini masih tergolong mahal serta juga menggunakan bahan kimia yang berbahaya pada proses pembuatannya. Oleh karena itu perlu dikembangkan sel surya alternatif yang berbahan dasar murah dan ramah lingkungan, seperti DSSC (Dye Sensitized Solar Cell). Penggunaan DSSC sangat bagus dikembangkan dikarenakan proses pembuatan yang sederhana, biaya murah serta berbahan dasar organik.. Berdasarkan hal tersebut, perlu adanya pengembangan DSSC menggunakan dye dari ekstrak antosianin dari bahan alam yang banyak terdapat dilingkungan.  Material and Metode. Penelitian ini bertujuan mengetahui karakteristik DSSC menggunakan ekstrak bunga rosella dengan variasi jarak sumber cahaya terhadap DSSC. Karakteristik yang diukur adalah nilai arus dan tegangan serta efisiensi sel.  Sebagai sumber cahaya digunakan adalah lampu halogen 150 watt. Sumber cahaya diletakkan pada jarak 10 cm, 20 cm dan 30 cm. Hasil. Karakterisasi nilai tegangan dan arus DSSC menggunakan cahaya lampu halogen dengan jarak 10 cm terhadap DSSC lebih besar dibandingkan dengan jarak 20 cm dan 30 cm. Hasil pengujian menunjukkan bahwa efisiensi sel yang berjarak 10 cm terhadap DSSC merupakan hasil terbaik arus maksimal (Imax) 0,08 mA, tegangan maksimal (Vmax) 121,7 mV. Kesimpulan. Kinerja dari DSSC dipengaruhi oleh jarak sumber cahaya yang digunakan terhadap sel. Perbedaan nilai efisiensi ini disebabkan oleh besar intensitas cahaya terhadap sel, semakin dekat jarak sumber cahaya semakin besar intensitas cahaya sehingga menghasilkan nilai efisiensi yang besar. Abstrack Objective. The use of silicon solar cells is still relatively expensive and also uses harmful chemicals in the manufacturing process. Therefore it is necessary to develop alternative solar cells that are based on inexpensive and environmentally friendly, such as DSSC (Dye-Sensitized Solar Cell). The use of DSSC is very well prepared because of the simple manufacturing process, low cost, and organic-based. Based on this, the development of DSSC requires the use of dye from anthocyanin extracts from natural materials that are widely available in the environment. Materials and Methods. This study aims to determine the characteristics of DSSC using rosella flower extracts with variations in the distance of the light source to DSSC. The trademarks measured are current and voltage values ​​and cell efficiency. As the light source used is a 150-watt halogen lamp. Light sources are placed at a distance of 10 cm, 20 cm, and 30 cm. Results. Characterization of DSSC voltage and current values ​​using a halogen lamp with a distance of 10 cm to DSSC is more significant than a length of 20 cm and 30 cm. The test results show that the efficiency of cells within 10 cm of DSSC is the best result of maximum current (Imax) of 0.08 mA, maximum voltage (Vmax) of 121.7 mV. Conclusion. The performance of DSSC is influenced by the distance of the light source used against the cell. This difference in efficiency value is caused by the higher intensity of the light to the battery, the closer the distance of the light source, the higher the depth of the sun to produce an immense efficiency value.


Author(s):  
Fuming Tzu ◽  
Jung-Hua Chou

Light sources tend to affect images captured in any automatic optical inspection (AOI) system. In this study, the effectiveness of metal-halide lamps, quartz-halogen lamps, and LEDs as the light sources in AOI systems for the detection of the 3rd and 4th layers electrodes of thin-film-transistor liquid crystal displays (TFT-LCDs) is examined experimentally. The results show that the performance of LEDs is generally comparable or better than that of metal-halide and quartz-halogen lamps. The best optical performance is by the blue LED due to its spectrum compatibility with the time-delay-integration charged-coupled device (TDI CCD) sensor and its better spatial resolution. The images revealed by the blue LED are sharper and more distinctive. Since current LEDs are more energy efficient and environmentally friendly, using LEDs as the light source for AOI is very beneficial. As the blue LED performs the best, it should be adopted for AOI using TDI CCD sensors.


2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


Sign in / Sign up

Export Citation Format

Share Document