scholarly journals Microbiota and age-related macular degeneration: where are we today?

ABOUTOPEN ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23-28
Author(s):  
Angelo Maria Minnella ◽  
Francesca Albanesi ◽  
Martina Maceroni

Age-related macular degeneration (AMD) is a complex degenerative multifactorial retinal disease, representing a leading cause of legal blindness among elderly individuals. It is well known that age, family history, smoking, nutrition, and inflammation contribute to the development of AMD. Recent studies support the existence of a gut-retina axis involved in the pathogenesis of several ocular diseases, including AMD. High-fat and high simple sugar diets determine a derangement of the gut microbiota, with an increase of gut permeability and systemic low-grade inflammation. Leaky gut is correlated with higher levels of circulating microbial-associated pattern molecules, which trigger the systemic release of potent proinflammatory mediators and stimulate the specific immune cells of the retina, contributing to retinal damage. All these findings suggest that microbiota is closely related to AMD and that it may be targeted in order to influence AMD pathogenesis and/or its clinical course.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomohito Sato ◽  
Masaru Takeuchi ◽  
Yoko Karasawa ◽  
Kei Takayama ◽  
Toshio Enoki

AbstractNeovascular age-related macular degeneration (nAMD) is a complex and multi-factorial disease, and low-grade inflammation is associated with pathogenesis of nAMD. Aqueous humor could reflect intraocular immune environments in various eye diseases. The research so far used aqueous humor samples and revealed that inflammation is involved in pathophysiology of nAMD, although immunological roles of cytokines were evaluated inadequately with aspect to individual effects. Here we used 27 kinds of cytokines covering general immunologic reactions, examined specific expression patterns of cytokines, and assessed relationships between inflammation and pathophysiology of nAMD by multivariate analyses. In nAMD eyes, principal component analysis showed that IL-7, MCP-1, MIP-1β and VEGF had high principal component loadings of over 0.6 in the first principal component constituting 32.6% of all variability of the data. In exploratory factor analysis, IL-6, MCP-1 and MIP-1β had high factor loadings (FL) of over 0.5 in Factor 1 constituting 32.6% of all variability, while VEGF had FL of over 1.0 in Factor 3 constituting 10.7% of all variability. In hierarchical cluster analysis, MCP-1 and VEGF were located in the cluster of first proximate mutual distance to central retinal thickness. These data could suggest that low-grade inflammation is a principal contributor in nAMD.


Author(s):  
Emanuele Rinninella ◽  
Maria Cristina Mele ◽  
Nicolò Merendino ◽  
Marco Cintoni ◽  
Gaia Anselmi ◽  
...  

Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged >=65 years in developed countries. Globally, it affects 30-50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many observational studies, such as AREDS-1 and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high fat and high glucose or fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1677 ◽  
Author(s):  
Emanuele Rinninella ◽  
Maria Mele ◽  
Nicolò Merendino ◽  
Marco Cintoni ◽  
Gaia Anselmi ◽  
...  

Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged ≥65 years in developed countries. Globally, it affects 30–50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many studies, such as the randomized controlled trials (RCTs) Age-Related Eye Disease Study (AREDS) and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high-fat and high-glucose or -fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression.


2021 ◽  
Vol 10 (10) ◽  
pp. 2072
Author(s):  
Phoebe Lin ◽  
Scott M. McClintic ◽  
Urooba Nadeem ◽  
Dimitra Skondra

Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasmine Derradji ◽  
Agata Mosinska ◽  
Stefanos Apostolopoulos ◽  
Carlos Ciller ◽  
Sandro De Zanet ◽  
...  

AbstractAge-related macular degeneration (AMD) is a progressive retinal disease, causing vision loss. A more detailed characterization of its atrophic form became possible thanks to the introduction of Optical Coherence Tomography (OCT). However, manual atrophy quantification in 3D retinal scans is a tedious task and prevents taking full advantage of the accurate retina depiction. In this study we developed a fully automated algorithm segmenting Retinal Pigment Epithelial and Outer Retinal Atrophy (RORA) in dry AMD on macular OCT. 62 SD-OCT scans from eyes with atrophic AMD (57 patients) were collected and split into train and test sets. The training set was used to develop a Convolutional Neural Network (CNN). The performance of the algorithm was established by cross validation and comparison to the test set with ground-truth annotated by two graders. Additionally, the effect of using retinal layer segmentation during training was investigated. The algorithm achieved mean Dice scores of 0.881 and 0.844, sensitivity of 0.850 and 0.915 and precision of 0.928 and 0.799 in comparison with Expert 1 and Expert 2, respectively. Using retinal layer segmentation improved the model performance. The proposed model identified RORA with performance matching human experts. It has a potential to rapidly identify atrophy with high consistency.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaushal Sharma ◽  
Priya Battu ◽  
Ramandeep Singh ◽  
Suresh Kumar Sharma ◽  
Akshay Anand

AbstractAge-related macular degeneration (AMD) is a devastating retinal disease that results in irreversible vision loss in the aged population. The complex genetic nature and degree of genetic penetrance require a redefinition of the current therapeutic strategy for AMD. We aimed to investigate the role of modifiers for current anti-VEGF therapy especially for non-responder AMD patients. We recruited 78 wet AMD cases (out of 278 AMD patients) with their socio-demographic and treatment regimen. Serum protein levels were estimated by ELISA in AMD patients. Data pertaining to the number of anti-VEGF injections given (in 1 year) along with clinical images (FFA and OCT) of AMD patients were also included. Visual acuity data (logMAR) for 46 wet AMD cases out of a total of 78 patients were also retrieved to examine the response of anti-VEGF injections in wet AMD cases. Lipid metabolizing genes (LIPC and APOE) have been identified as chief biomarkers for anti-VEGF response in AMD patients. Both genotypes ‘CC’ and ‘GC’ of LIPC have found to be associated with a number of anti-VEGF injections in AMD patients which could influence the expression of B3GALTL,HTRA1, IER3, LIPC and SLC16A8 proteins in patients bearing both genotypes as compared to reference genotype. Elevated levels of APOE were also observed in group 2 wet AMD patients as compared to group 1 suggesting the significance of APOE levels in anti-VEGF response. The genotype of B3GALTL has also been shown to have a significant association with the number of anti-VEGF injections. Moreover, visual acuity of group 1 (≤ 4 anti-VEGF injections/year) AMD patients was found significantly improved after 3 doses of anti-VEGF injections and maintained longitudinally as compared to groups 2 and 3. Lipid metabolising genes may impact the outcome of anti-VEGF AMD treatment.


Sign in / Sign up

Export Citation Format

Share Document