leaky gut
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 121)

H-INDEX

27
(FIVE YEARS 8)

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Piero Portincasa ◽  
Leonilde Bonfrate ◽  
Mohamad Khalil ◽  
Maria De Angelis ◽  
Francesco Maria Calabrese ◽  
...  

The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dekai Zheng ◽  
Huimin Liao ◽  
Shuze Chen ◽  
Xiuying Liu ◽  
Chuyin Mao ◽  
...  

BackgroundA growing number of studies have found dysbiosis of the intestinal microbiota in patients with Graves’ disease (GD). The intestinal epithelial barrier serves as the first line of defense, protecting the immune system from excessive stimulation of microbiota and toxins. Most autoimmune diseases are associated with a gut barrier dysfunction (leaky gut) which allows bacterial translocation. However, to date, potential correlations between intestinal barrier dysfunction and GD have not been explored.MethodsSerum lipopolysaccharide (LPS), intestinal fatty acid-binding protein (I-FABP), zonulin, D-lactate, and diamine oxidase (DAO) were measured to assess barrier integrity in 91 patients with GD (61 initial GD and 30 euthyroid GD) and 44 healthy controls. The quality of life (QOL) of patients with GD was assessed using the thyroid-specific patient-reported outcome (ThyPRO-39) questionnaire.ResultsThe serum levels of LPS, I-FABP, zonulin, and D-lactate were significantly higher in patients with initial GD than in healthy controls. Logistic regression analysis revealed that zonulin and D-lactate were independently associated with risk for GD and circulating zonulin could effectively distinguish patients with initial GD from healthy controls. Correlation analyses showed that I-FABP, LPS, and D-lactate were positively associated with FT4 and negatively associated with TSH. In addition, circulating LPS, zonulin, and D-lactate levels were all independent predictors of TRAb levels. Moreover, higher circulating LPS levels in patients with GD were associated with more severe hyperthyroidism (higher concentrations of FT3, FT4, and TRAb and lower TSH concentrations) and worse scores of hyperthyroid and eye symptoms.ConclusionPatients with initial GD show a disrupted intestinal barrier, characterized by elevated levels of leaky gut biomarkers. Increased intestinal permeability and bacterial translocation were associated with TRAb levels and hyperthyroidism in GD. Further research is required to elucidate the underlying mechanisms.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 877
Author(s):  
Hiroyuki Hoshiko ◽  
Edith J. M. Feskens ◽  
Els Oosterink ◽  
Renata M. C. Ariens ◽  
Jurriaan J. Mes ◽  
...  

A leaky gut can trigger chronic inflammation and poses a primary risk for metabolic diseases. This study established a relationship between intestinal integrity (leaky gut) and metabolic health in a general population. Leaky-gut markers (LGMs) were studied in a large population of Dutch adults with a broad spectrum of metabolic health. This study enrolled 500 individuals selected within the NQplus cohort study (n = 2048) by stratified randomization, based on waist circumference, fasting glucose, and high-density lipoprotein (HDL) cholesterol to obtain a representative and balanced population in terms of metabolic health parameters, sex (male/female), and age (<54/≥54 years). LGMs—zonulin, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14)—were measured in EDTA plasma or serum. Zonulin was most strongly associated with metabolic health. Zonulin and LBP were most strongly associated with the inflammatory marker C-reactive protein (CRP). The quartile analysis for zonulin and LBP showed that most metabolic health parameters and CRP levels increased from Q1 to Q4, with significant differences between quartiles, except for markers related to glucose homeostasis (glucose and glycated hemoglobin A1c (HbA1c)). Associations between LGMs and metabolic health parameters in this large Dutch adult population indicate that LGMs are valuable markers for identifying people at risk of a leaky gut and subsequent chronic inflammation linked to metabolic disorders.


2021 ◽  
Vol 22 (24) ◽  
pp. 13177
Author(s):  
Dagmara Kociszewska ◽  
Jeffrey Chan ◽  
Peter R. Thorne ◽  
Srdjan M. Vlajkovic

This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood–labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.


Author(s):  
Natalia Di Tommaso ◽  
Antonio Gasbarrini ◽  
Francesca Romana Ponziani

The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of ‘leaky gut syndrome’ and ‘gut dysbiosis’, which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 672-672
Author(s):  
Shaohua Wang ◽  
Bo Wang ◽  
Sidharth Mishra ◽  
Shalini Jain ◽  
Jingzhong Ding ◽  
...  

Abstract Inflammaging characterized with increased low grade inflammation in older adults is common determinant of unhealthy aging; and is a major risk factor of morbidity and mortality in older adults. The precise origin of inflammation in older adults is not known, however, emerging evidence indicate that increased intestinal epithelial permeability (leaky gut) and abnormal (dysbiotic) gut microbiota could be one of the key source. However, no preventive and treatment therapies are available to reverse the leaky gut and microbiome dysbiosis in older adults. Here, we presented the evidence that a human-origin probiotics cocktail containing 5 Lactobacillus and 5 Enterococcus strains isolated from healthy human infant gut can ameliorate aging-related metabolic, physical and cognitive dysfunctions in older mice. We show that the Feeding this probiotic cocktail prevented high-fat diet–induced (HFD-induced) abnormalities in glycose metabolism and physical functions in older mice and reduced microbiota dysbiosis, leaky gut, inflammation. Probiotic-modulated gut microbiota reduced leaky gut by increasing tight junctions on intestinal epithelia, which in turn reduced inflammation. Mechanistically, probiotics increased bile salt hydrolase activity in older microbiota, which in turn increased taurine deconjugation from bile acids to increase free taurine abundance in the gut. We further show that taurine stimulated tight junctions and suppressed gut leakiness. Further, taurine increased life span, reduced adiposity and leaky gut, and enhanced physical function in Caenorhabditis elegans. Whether this novel human origin probiotic therapy could prevent or treat aging-related leaky gut and inflammation in the elderly by reversing microbiome dysbiosis requires evaluation.


2021 ◽  
Vol 9 (11) ◽  
pp. 2390
Author(s):  
Wiwat Chancharoenthana ◽  
Asada Leelahavanichkul ◽  
Wassawon Ariyanon ◽  
Somratai Vadcharavivad ◽  
Suphasit Phatcharophaswattanakul ◽  
...  

The hallmark of severe dengue infection is the increased vascular permeability and hemodynamic alteration that might be associated with an intestinal permeability defect. However, the mechanisms underlying the gastrointestinal-related symptoms of dengue are not well characterized. A prospective observational study was conducted on patients with dengue who were categorized according to: (i) febrile versus critical phase and (ii) hospitalized patients with versus without the warning signs to evaluate the gut barrier using lactulose-to-mannitol excretion ratio (LEMR). Serum endotoxins, (1→3)-β-D-glucan (BG), and inflammatory parameters were measured. A total of 48 and 38 patients were enrolled in febrile illness and critical phase, respectively, while 22 and 64 patients presented with or without the warning signs, respectively. At enrollment, a positive LEMR test was found in 20 patients (91%) with warning signs, regardless of phase of infection. Likewise, serum endotoxins and BG, the indirect biomarkers for leaky gut, prominently increased in patients who developed severe dengue when compared with the non-severe dengue (endotoxins, 399.1 versus 143.4 pg/mL (p < 0.0001); BG, 123 versus 73.8 pg/mL (p = 0.016)). Modest impaired intestinal permeability occurred in dengue patients, particularly those with warning signs, and were associated with endotoxemia and elevated BG. Thus, leaky gut syndrome might be associated with severity of dengue infection.


Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1583
Author(s):  
Hiroyuki Hoshiko ◽  
Gertrude G. Zeinstra ◽  
Kaatje Lenaerts ◽  
Els Oosterink ◽  
Renata M. C. Ariens ◽  
...  

We explored whether metabolic health is linked to intestinal permeability, using a multi-sugar (MS) permeability test, and whether intestinal permeability is correlated with the leaky gut-related markers (LGM) zonulin, LBP, and sCD14. Metabolically healthy (n = 15) and unhealthy subjects (n = 15) were recruited based on waist circumference, fasting glucose, and high-density lipoprotein cholesterol levels. Participants underwent an MS permeability test that assessed site-specific permeabilities of the gastroduodenum and small and large intestines. The test was performed with/without an acetylsalicylic acid challenge to measure and correlate the gut permeability, LGM, and metabolic health. At baseline, metabolic health showed no correlation with gut permeability. Significant correlations were found between the metabolic health parameters and LGM. In the acetylsalicylic acid challenged MS permeability test, low-density lipoprotein cholesterol was correlated with the sucralose/erythritol ratio, reflecting the whole intestinal permeability. Correlations between most metabolic health parameters and LGM during the acetylsalicylic acid challenge were less pronounced than at baseline. In both MS permeability tests, no significant correlations were found between LGM (plasma and serum) and gut permeability. Thus, correlations between LGM and metabolic health might not be linked with paracellular gut permeability. Transcellular translocation and/or lipoprotein-related transportation is a more likely mechanism underlying the association between LGM and metabolic health.


Author(s):  
N G Briggs ◽  
B C Silva ◽  
L A Godoi ◽  
J P Schoonmaker

Abstract The negative impacts of stress on gastrointestinal (GIT) barrier function can result in compromised animal growth and health. Aspirin is known to cause mucosal injury leading to increased gut permeability and tight junction damage and can be used as a model to study leaky gut in cattle. The objective of this study was to determine the long-term impact of aspirin induced chronic leaky gut on cattle growth and carcass attributes. Two treatments were evaluated in 2 studies: control (no aspirin) or 0.25% of the diet DM aspirin fed daily. Diets consisted of 50% corn, 24% dried distillers grains, 20% corn silage and 6 % supplement on a DM basis. In experiment 1, sixteen Angus x Simmental heifers, allotted by BW and breed composition, were fed diets for 154 d. On day 155, heifers were dosed with 1 L of a 180 mM Cr-EDTA solution using an esophageal tube and had urine collected every 1.5 to 3 h for 48 h for analysis of Cr as a measure of gut leakiness. In experiment 2, ninety-six Simmental x Angus steers (355.0 ± 14.8 kg) were allotted by body weight and breed composition and fed treatment diets for 159 d. Weight was recorded monthly and serum was collected on d 159 and analyzed for lipopolysaccharide binding protein (LBP), interleukin-6 (IL-6), serum amyloid A (SAA), haptoglobin, and aspartate aminotransferase (AST). Data were analyzed using the MIXED procedure of SAS. Heifers fed 0.25% aspirin in experiment 1 excreted more Cr into urine compared to heifers not fed aspirin (overall treatment effect, P = 0.01). In experiment 2, aspirin tended to increase serum LBP (P = 0.06), but had no effect on concentrations of IL-6, haptoglobin, SAA, or AST (P ≥ 0.25). Aspirin tended to decrease average daily gain (P = 0.10), decreased hot carcass weight and rib-eye area (P ≤ 0.05), and increased fat thickness, marbling score, and yield grade (P ≤ 0.02). Aspirin tended to increase KPH% (P = 0.10) and had no effect on liver abscesses (P ≥ 0.80). This study indicates that leaky gut induced by long-term administration of aspirin has negative impacts on feedlot performance and carcass composition. The negative impact of aspirin induced leaky gut on animal performance suggests that chronic leaky gut caused by other factors (subacute acidosis, stress) may be a significant problem for the feedlot industry.


Sign in / Sign up

Export Citation Format

Share Document