scholarly journals Flow Field Analysis and Performance Assessment Inside a Vanned Diffuser of a Laboratory-Type Centrifugal Pump

1970 ◽  
Vol 3 (1) ◽  
pp. 8-15
Author(s):  
Abdelmadjid Atif ◽  
Sara Sami

The paper refers to the analysis of flow fields inside a vaned diffuser and performance assessment of a laboratory-type centrifugal pump operating with air. The study deals with numerical simulation of the flow at design flow rate, with focus on velocity and pressure distributions across a diffuser passage. The aim is to highlight the flow structure how it leaves the impeller and evolves through the diffuser to understand the mechanism of pressure recovery. The performance assessment consists of evaluating diffuser effectiveness. The numerical results are compared to experimental measurements for validation.

2016 ◽  
Vol 8 (10) ◽  
pp. 168781401667375 ◽  
Author(s):  
Wei Li ◽  
Xiaoping Jiang ◽  
Qinglong Pang ◽  
Ling Zhou ◽  
Wei Wang

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 126
Author(s):  
Houlin Liu ◽  
Ruichao Xia ◽  
Kai Wang ◽  
Yucheng Jing ◽  
Xianghui He

Experimental measurements to analyze the pressure fluctuation performance of a centrifugal pump with a vaned-diffuser, which its specific speed is 190. Results indicate that the main cause of pressure fluctuation is the rotor-stator interference at the impeller outlet. The head of the pump with vaned-diffuser at the design flow rate is 15.03 m, and the efficiency of the pump with a vaned-diffuser at the design flow rate reaches 71.47%. Pressure fluctuation decreases gradually with increasing distance from the impeller outlet. Along with the increase of the flow rate, amplitude of pressure fluctuation decreases. The amplitude of pressure fluctuation at the measuring points near the diffusion section of the pump body is larger than other measuring points. The variation tendency of pressure fluctuation at P1–P10 is the same, while there are wide frequency bands with different frequencies. The dominant frequency of pressure fluctuation is the blade passing frequency. The rotor-stator interference between the impeller and the vaned-diffuser gives rise to the main signal source of pressure fluctuation.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982590 ◽  
Author(s):  
Kai Wang ◽  
Yu-cheng Jing ◽  
Xiang-hui He ◽  
Hou-lin Liu

In order to enhance the efficiency of centrifugal pump, the structure of a centrifugal pump with vaned diffuser, whose specific speed is 190, was numerically improved by trimming back-blades of impeller and smoothing sharp corner in annular chamber. The energy performance, the internal flow field, the axial force, the radial force, and the pressure pulsation of the pump were analyzed. Results show that efficiency of the improving scheme 1 under the design flow rate is 77.47%, which can balance 69.82% of the axial force, while efficiency of the improving scheme 2 under the design flow rate is the maximum, which could still balance 62.74% of the axial force. The pressure pulsations of the improving scheme 2 at the typical monitoring points are less than that of the improving scheme 1 and the original scheme. The difference of the radial force peak between the improving scheme 1 and the improving scheme 2 is very small. The vector distributions of the radial force of the improving scheme 1 and the improving scheme 2 are more uniform than that of the original scheme. Considering the efficiency, pressure pulsation, and axial force, experiment measurements on the improving scheme 2 were carried out to verify the effectiveness of the improvement result. Results of energy performance experiment show that efficiency of the improving scheme 2 under the design flow rate is 76.48%, which is 5.26 percentage points higher than that of the original scheme.


2020 ◽  
Vol 155 ◽  
pp. 01014
Author(s):  
Xiao Zhang ◽  
He Huang

In order to study the flow velocity, static pressure and turbulent kinetic energy distribution of the inter-stage flow passage, the numerical calculation of the inter-stage flow passage of the multistage split centrifugal pump was carried out under the design condition. The results show that the fluid flows along the inter-stage water flow channel, and backflow and vortices are generated at the guide vanes at the end of the bridge, which causes certain energy loss. In this paper, based on the original design, three different improvement schemes are proposed by changing the shape and position of the guide vane for the backflow and vortex generated near the guide vanes. The improved scheme is numerically simulated, and the energy loss values of the four different flow passages are calculated by integration. After comparison and analysis, the second scheme is determined as the best scheme, and the accuracy of simulation is verified by experiments.


2015 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Yu-Liang Zhang ◽  
Zu-Chao Zhu

AbstractTo study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1883-1898 ◽  
Author(s):  
Yanbin Zhang ◽  
Neha Bansal ◽  
Yusuke Fujita ◽  
Akhil Datta-Gupta ◽  
Michael J. King ◽  
...  

Summary Current industry practice for characterization and assessment of unconventional reservoirs mostly uses empirical decline-curve analysis or analytic rate- and pressure-transient analysis. High-resolution numerical simulation with local perpendicular bisector (PEBI) grids and global corner-point grids has also been used to examine complex nonplanar fracture geometry, interaction between hydraulic and natural fractures, and implications for the well performance. Although the analytic tools require many simplified assumptions, numerical-simulation techniques are computationally expensive and do not provide the more-geometric understanding derived from the depth-of-investigation (DOI) and drainage-volume calculations. We propose a novel approach for rapid field-scale performance assessment of shale-gas reservoirs. Our proposed approach is dependent on a high-frequency asymptotic solution of the diffusivity equation in heterogeneous reservoirs and serves as a bridge between simplified analytical tools and complex numerical simulation. The high-frequency solution leads to the Eikonal equation (Paris and Hurd 1969), which is solved for a “diffusive time of flight” (DTOF) that governs the propagation of the “pressure front” in the reservoir. The Eikonal equation can be solved by use of the fast-marching method (FMM) to determine the DTOF, which generalizes the concept of DOI to heterogeneous and fractured reservoirs. It provides an efficient means to calculate drainage volume, pressure depletion, and well performance and can be significantly faster than conventional numerical simulation. More importantly, in a manner analogous to streamline simulation, the DTOF can also be used as a spatial coordinate to reduce the 3D diffusivity equation to a 1D equation, leading to a comprehensive simulator for rapid performance prediction of shale-gas reservoirs. The speed and versatility of our proposed method makes it ideally suited for high-resolution reservoir characterization through integration of static and dynamic data. The major advantages of our proposed approach are its simplicity, intuitive appeal, and computational efficiency. We demonstrate the power and utility of our method by use of a field example that involves history matching, uncertainty analysis, and performance assessment of a shale-gas reservoir in east Texas. A sensitivity study is first performed to systematically identify the “heavy hitters” affecting the well performance. This is followed by history matching and an uncertainty analysis to identify the fracture parameters and the stimulated-reservoir volume. A comparison of model predictions with the actual well performance shows that our approach is able to reliably predict the pressure depletion and rate decline.


2012 ◽  
Vol 468-471 ◽  
pp. 1749-1752
Author(s):  
Chun Yao Wang ◽  
Xue Nong Wang ◽  
Fa Chen ◽  
Yue Liu ◽  
Jiu Peng Chi ◽  
...  

This article uses the flow field numerical simulation technology, it does simulation research for the flow field of the whole pneumatic conveying cotton trunk, through studying different types of jet orifice of the conveying trunk of comb—type cotton picker, finding out the influence of jet orifice width on pressure and velocity field, further understanding flow field distribution characteristics of the internal pneumatic cotton conveyance system, and providing necessary basis for the machine.


Sign in / Sign up

Export Citation Format

Share Document