scholarly journals EEG Multipurpose Eye Blink Detector using convolutional neural network

2021 ◽  
Vol 10 (15) ◽  
pp. e335101522712
Author(s):  
Amanda Ferrari Iaquinta ◽  
Ana Carolina de Sousa Silva ◽  
Aldrumont Ferraz Júnior ◽  
Jessica Monique de Toledo ◽  
Gustavo Voltani von Atzingen

The electrical signal emitted by the eyes movement produces a very strong artifact on EEG signal due to its close proximity to the sensors and abundance of occurrence. In the context of detecting eye blink artifacts in EEG waveforms for further removal and signal purification, multiple strategies where proposed in the literature. Most commonly applied methods require the use of a large number of electrodes, complex equipment for sampling and processing data. The goal of this work is to create a reliable and user independent algorithm for detecting and removing eye blink in EEG signals using CNN (convolutional neural network). For training and validation, three sets of public EEG data were used. All three sets contain samples obtained while the recruited subjects performed assigned tasks that included blink voluntarily in specific moments, watch a video and read an article. The model used in this study was able to have an embracing understanding of all the features that distinguish a trivial EEG signal from a signal contaminated with eye blink artifacts without being overfitted by specific features that only occurred in the situations when the signals were registered.

2021 ◽  
Vol 11 (21) ◽  
pp. 9948
Author(s):  
Amira Echtioui ◽  
Ayoub Mlaouah ◽  
Wassim Zouch ◽  
Mohamed Ghorbel ◽  
Chokri Mhiri ◽  
...  

Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person’s intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices such as exoskeletons, wheelchairs, prostheses, and even independent driving. Therefore, classifying the motor imagery tasks of these signals is important for a Brain-Computer Interface (BCI) system. Classifying the MI tasks from EEG signals is difficult to offer a good decoder due to the dynamic nature of the signal, its low signal-to-noise ratio, complexity, and dependence on the sensor positions. In this paper, we investigate five multilayer methods for classifying MI tasks: proposed methods based on Artificial Neural Network, Convolutional Neural Network 1 (CNN1), CNN2, CNN1 with CNN2 merged, and the modified CNN1 with CNN2 merged. These proposed methods use different spatial and temporal characteristics extracted from raw EEG data. We demonstrate that our proposed CNN1-based method outperforms state-of-the-art machine/deep learning techniques for EEG classification by an accuracy value of 68.77% and use spatial and frequency characteristics on the BCI Competition IV-2a dataset, which includes nine subjects performing four MI tasks (left/right hand, feet, and tongue). The experimental results demonstrate the feasibility of this proposed method for the classification of MI-EEG signals and can be applied successfully to BCI systems where the amount of data is large due to daily recording.


2020 ◽  
Vol 32 (4) ◽  
pp. 731-737
Author(s):  
Akinari Onishi ◽  
◽  

Brain-computer interface (BCI) enables us to interact with the external world via electroencephalography (EEG) signals. Recently, deep learning methods have been applied to the BCI to reduce the time required for recording training data. However, more evidence is required due to lack of comparison. To reveal more evidence, this study proposed a deep learning method named time-wise convolutional neural network (TWCNN), which was applied to a BCI dataset. In the evaluation, EEG data from a subject was classified utilizing previously recorded EEG data from other subjects. As a result, TWCNN showed the highest accuracy, which was significantly higher than the typically used classifier. The results suggest that the deep learning method may be useful to reduce the recording time of training data.


2021 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Tianjun Liu ◽  
Deling Yang

Motor imagery (MI) is a classical method of brain–computer interaction (BCI), in which electroencephalogram (EEG) signal features evoked by imaginary body movements are recognized, and relevant information is extracted. Recently, various deep-learning methods are being focused on in finding an easy-to-use EEG representation method that can preserve both temporal information and spatial information. To further utilize the spatial and temporal features of EEG signals, an improved 3D representation of the EEG and a densely connected multi-branch 3D convolutional neural network (dense M3D CNN) for MI classification are introduced in this paper. Specifically, as compared to the original 3D representation, a new padding method is proposed to pad the points without electrodes with the mean of all the EEG signals. Based on this new 3D presentation, a densely connected multi-branch 3D CNN with a novel dense connectivity is proposed for extracting the EEG signal features. Experiments were carried out on the WAY-EEG-GAL and BCI competition IV 2a datasets to verify the performance of this proposed method. The experimental results show that the proposed framework achieves a state-of-the-art performance that significantly outperforms the multi-branch 3D CNN framework, with a 6.208% improvement in the average accuracy for the BCI competition IV 2a datasets and 6.281% improvement in the average accuracy for the WAY-EEG-GAL datasets, with a smaller standard deviation. The results also prove the effectiveness and robustness of the method, along with validating its use in MI-classification tasks.


Author(s):  
Efy Yosrita ◽  
Rosida Nur Aziza ◽  
Rahma Farah Ningrum ◽  
Givary Muhammad

<span>The purpose of this research is to observe the effectiveness of independent component analysis (ICA) method for denoising raw EEG signals based on word imagination, which will be used for word classification on unspoken speech. The electroencephalogram (EEG) signals are signals that represent the electrical activities of the human brain when someone is doing activities, such as sleeping, thinking or other physical activities. EEG data based on the word imagination used for the research is accompanied by artifacts, that come from muscle movements, heartbeat, eye blink, voltage and so on. In previous studies, the ICA method has been widely used and effective for relieving physiological artifacts. Artifact to signal ratio (ASR) is used to measure the effectiveness of ICA in this study. If the ratio is getting larger, the ICA method is considered effective for clearing noise and artifacts from the EEG data. Based on the experiment, the obtained ASR values from 11 subjects on 14 electrodes amounted are within the range of 0,910 to 1,080. Thus, it can be concluded that ICA is effective for removing artifacts from EEG signals based on word imagination.</span>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


Sign in / Sign up

Export Citation Format

Share Document