scholarly journals Functional similarity of attached and free-living bacteria during freshwater phytoplankton blooms

2001 ◽  
Vol 25 ◽  
pp. 103-111 ◽  
Author(s):  
J Worm ◽  
K Gustavson ◽  
K Garde ◽  
NH Borch ◽  
M Søndergaard
Author(s):  
Martin Hahn ◽  
Andrea Huemer ◽  
Alexandra Pitt ◽  
Matthias Hoetzinger

Current knowledge on environmental distribution and taxon richness of free-living bacteria is mainly based on cultivation-independent investigations employing 16S rRNA gene sequencing methods. Yet, 16S rRNA genes are evolutionarily rather conserved, resulting in limited taxonomic and ecological resolutions provided by this marker. We used a faster evolving protein-encoding marker to reveal ecological patterns hidden within a single OTU defined by >99% 16S rRNA sequence similarity. The studied taxon, subcluster PnecC of the genus Polynucleobacter, represents a ubiquitous group of planktonic freshwater bacteria with cosmopolitan distribution, which is very frequently detected by diversity surveys of freshwater systems. Based on genome taxonomy and a large set of genome sequences, a sequence similarity threshold for delineation of species-like taxa could be established. In total, 600 species-like taxa were detected in 99 freshwater habitats scattered across three regions representing a latitudinal range of 3400 km (42°N to 71°N) and a pH gradient of 4.2 to 8.6. Besides the unexpectedly high richness, the increased taxonomic resolution revealed structuring of Polynucleobacter communities by a couple of macroecological trends, which was previously only demonstrated for phylogenetically much broader groups of bacteria. A unexpected pattern was the almost complete compositional separation of Polynucleobacter communities of Ca-rich and Ca-poor habitats, which strongly resembled the vicariance of plant species on silicate and limestone soils. The presented new cultivation-independent approach opened a window to an incredible, previously unseen diversity, and enables investigations aiming on deeper understanding of how environmental conditions shape bacterial communities and drive evolution of free-living bacteria.


2020 ◽  
Vol 24 ◽  
pp. 41-50
Author(s):  
Rebecca S. Meaney ◽  
Samir Hamadache ◽  
Maximillian P.M. Soltysiak ◽  
Bogumil J. Karas
Keyword(s):  

Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 262 ◽  
Author(s):  
Sabine Brantl ◽  
Peter Müller

Toxin–antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.


2013 ◽  
Vol 23 (3) ◽  
pp. 255-259 ◽  
Author(s):  
Friedrich Reinhard ◽  
Ryo Miyazaki ◽  
Nicolas Pradervand ◽  
Jan Roelof van der Meer

Sign in / Sign up

Export Citation Format

Share Document