Calcification of an estuarine coccolithophore increases with ocean acidification when subjected to diurnally fluctuating carbonate chemistry

2018 ◽  
Vol 601 ◽  
pp. 59-76
Author(s):  
MM White ◽  
DT Drapeau ◽  
LC Lubelczyk ◽  
VC Abel ◽  
BC Bowler ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. eaba9958
Author(s):  
Maxence Guillermic ◽  
Louise P. Cameron ◽  
Ilian De Corte ◽  
Sambuddha Misra ◽  
Jelle Bijma ◽  
...  

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.


2015 ◽  
Vol 12 (9) ◽  
pp. 2607-2630 ◽  
Author(s):  
C. Evenhuis ◽  
A. Lenton ◽  
N. E. Cantin ◽  
J. M. Lough

Abstract. Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.


2014 ◽  
Vol 11 (10) ◽  
pp. 2857-2869 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.


2016 ◽  
Vol 74 (4) ◽  
pp. 926-928 ◽  
Author(s):  
Paul McElhany

The ocean acidification (OA) literature is replete with laboratory studies that report species sensitivity to seawater carbonate chemistry in experimental treatments as an “effect of OA”. I argue that this is unintentionally misleading, since these studies do not actually demonstrate an effect of OA but rather show sensitivity to CO2. Documenting an effect of OA involves showing a change in a species (e.g. population abundance or distribution) as a consequence of anthropogenic changes in marine carbonate chemistry. To date, there have been no unambiguous demonstrations of a population level effect of anthropogenic OA, as that term is defined by the IPCC.


2009 ◽  
Vol 6 (2) ◽  
pp. 4413-4439 ◽  
Author(s):  
J.-P. Gattuso ◽  
H. Lavigne

Abstract. Although future changes in the seawater carbonate chemistry are well constrained, their impact on marine organisms and ecosystems remains poorly known. The biological response to ocean acidification is a recent field of research as most purposeful experiments have only been carried out in the late 1990s. The potentially dire consequences of ocean acidification attract scientists and students with a limited knowledge of the carbonate chemistry and its experimental manipulation. Hence, some guidelines on carbonate chemistry manipulations may be helpful for the growing ocean acidification community to maintain comparability. Perturbation experiments are one of the key approaches used to investigate the biological response to elevated pCO2. They are based on measurements of physiological or metabolic processes in organisms and communities exposed to seawater with normal or altered carbonate chemistry. Seawater chemistry can be manipulated in different ways depending on the facilities available and on the question being addressed. The goal of this paper is (1) to examine the benefits and drawbacks of various manipulation techniques and (2) to describe a new version of the R software package seacarb which includes new functions aimed at assisting the design of ocean acidification perturbation experiments. Three approaches closely mimic the on-going and future changes in the seawater carbonate chemistry: gas bubbling, addition of high-CO2 seawater as well as combined additions of acid and bicarbonate and/or carbonate.


2012 ◽  
Vol 9 (2) ◽  
pp. 1781-1792 ◽  
Author(s):  
C. J. M. Hoppe ◽  
G. Langer ◽  
S. D. Rokitta ◽  
D. A. Wolf-Gladrow ◽  
B. Rost

Abstract. The growing field of ocean acidification research is concerned with the investigation of organisms' responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30 % lower (i.e. ~300 μatm at a target pCO2 of 1000 μatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.


2020 ◽  
Author(s):  
Tamás Müller ◽  
et al.

Detailed information on the applied geochemical and calibration methods, carbonate chemistry models, age model, sample preservation, and additional information about species-specific effect on δ<sup>11</sup>B fractionation in brachiopods.<br>


Author(s):  
Marion Gehlen ◽  
Nicolas Gruber

By the year 2008, the ocean had taken up approximately 140 Gt carbon corresponding to about a third of the total anthropogenic CO2 emitted to the atmosphere since the onset of industrialization (Khatiwala et al. 2009 ). As the weak acid CO2 invades the ocean, it triggers changes in ocean carbonate chemistry and ocean pH (see Chapter 1). The pH of modern ocean surface waters is already 0.1 units lower than in pre-industrial times and a decrease by 0.4 units is projected by the year 2100 in response to a business-as- usual emission pathway (Caldeira and Wickett 2003). These changes in ocean carbonate chemistry are likely to affect major ocean biogeochemical cycles, either through direct pH effects or indirect impacts on the structure and functioning of marine ecosystems. This chapter addresses the potential biogeochemical consequences of ocean acidification and associated feedbacks to the earth system, with focus on the alteration of element fluxes at the scale of the global ocean. The view taken here is on how the different effects interact and ultimately alter the atmospheric concentration of radiatively active substances, i.e. primarily greenhouse gases such as CO2 and nitrous oxide (N2O). Changes in carbonate chemistry have the potential for interacting with ocean biogeochemical cycles and creating feedbacks to climate in a myriad of ways (Box 12.1). In order to provide some structure to the discussion, direct and indirect feedbacks of ocean acidification on the earth system are distinguished. Direct feedbacks are those which directly affect radiative forcing in the atmosphere by altering the air–sea flux of radiatively active substances. Indirect feedbacks are those that first alter a biogeochemical process in the ocean, and through this change then affect the air–sea flux and ultimately the radiative forcing in the atmosphere. For example, when ocean acidification alters the production and export of organic matter by the biological pump, then this is an indirect feedback. This is because a change in the biological pump alters radiative forcing in the atmosphere indirectly by first changing the nearsurface concentrations of dissolved inorganic carbon and total alkalinity.


2017 ◽  
Vol 14 (10) ◽  
pp. 2675-2684 ◽  
Author(s):  
Brooke A. Love ◽  
M. Brady Olson ◽  
Tristen Wuori

Abstract. As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.


2009 ◽  
Vol 6 (10) ◽  
pp. 2145-2153 ◽  
Author(s):  
K. G. Schulz ◽  
J. Barcelos e Ramos ◽  
R. E. Zeebe ◽  
U. Riebesell

Abstract. Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3−) at the expense of carbonate ion (CO32−) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (Ω). Several components of the carbonate system are considered potential key variables influencing for instance calcium carbonate precipitation in marine calcifiers such as coccolithophores, foraminifera, corals, mollusks and echinoderms. Unravelling the sensitivities of marine organisms and ecosystems to CO2 induced ocean acidification (OA) requires well-controlled experimental setups and accurate carbonate system manipulations. Here we describe and analyse the chemical changes involved in the two basic approaches for carbonate chemistry manipulation, i.e. changing DIC at constant total alkalinity (TA) and changing TA at constant DIC. Furthermore, we briefly introduce several methods to experimentally manipulate DIC and TA. Finally, we examine responses obtained with both approaches using published results for the coccolithophore Emiliania huxleyi. We conclude that under most experimental conditions in the context of ocean acidification DIC and TA manipulations yield similar changes in all parameters of the carbonate system, which implies direct comparability of data obtained with the two basic approaches for CO2 perturbation.


Sign in / Sign up

Export Citation Format

Share Document