UPAYA PENINGKATAN KEMAMPUAN MOTORIK KASAR ANAK DOWN SYNDROME DENGAN OLAHRAGA BOLA KAKI DI GOLDEN KIDS

Author(s):  
Sinto Robindo ◽  
Melda Rumia Rosmeri Simorangkir

ABSTRACT All aspects of development are very important in a person's life where the development of cognition, affection and psychomotor is well developed in accordance with its development, these three aspects can be said to be good and successful if the three aspects develop well. Like wise with the psychomotor aspect where between gross motor and fine motor are also balanced. Motoric is the development of coordinated body movement control between nerves, brain, and spinal cord (spinal cord or spinal cord). Child's gross motorization can be optimized by improving his motor movement coordination skills through physical activity in the form of coordination of body movements. Like throwing, catching, kicking, running, melopat, and maintaining balance. The condition of a Down Syndrome child who experiences weakness in the ability to think will affect in all aspects of his life. Down syndrome children have problems in cognitive abilities, effective and self-care abilities. This results in them needing special education. Basically, the educational goals that children with Down Syndrome want to achieve are not different from those of education in general. Because Down Syndrome children themselves are born in the midst of society. Keywords: football sports, gross motoric, down syndrome

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S910-S910
Author(s):  
W Quin Yow ◽  
Hui-Ching Chen ◽  
Tharshini Lokanathan

Abstract Dementia, a prevalent ageing disease, affects both the higher brain function and motor function, particularly finger movements (Chan, Haber, Drew, & Park, 2014). Task-based finger-tapping speed on a touchscreen device has been used as an assessment criterion to identify patients with deteriorating cognitive abilities (Gualtieri & Johnson, 2005; Cipriani, Bianchetti, & Trabucchi, 2006). As part of a larger project, we designed a computerized cognition intervention program and examined whether the intervention program would improve the finger-tapping speed of the dementia vis-à-vis the cognitively-healthy elderly. Ten mild-to-moderate dementia elderly (aged 83± 5.6) and 8 cognitively healthy elderly (aged 78±6.1) participated in a computerized intervention program where they played cognitive games on touch-screen tablet for about 30-45 minutes per session over two weeks. Participants’ touch interaction data over six sessions were collected and analyzed. Using a linear mixed-effect model for analysis, we found that in the 1st session, the touch performance of the dementia elderly was significantly worse than that of the cognitively-healthy elderly (b=-0.172, Z=-2.311, p<.05). By the 6th session, the dementia elderly had significantly improved their touch performance (b=-0.171, Z= -8.042, p<.001) such that their touch performance was now comparable to the cognitively-healthy elderly (b=-0.064, Z=-0.874, p=.393). Overall, our preliminary results suggested that after participating in 6 sessions of our computerized cognitive intervention program, the dementia elderly showed significant improvement in their fine motor movement as measured by their finger-tapping speed. The improved finger-tapping speed serves as a first step toward slowing down the cognitive decline of the dementia elderly.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui Lima ◽  
Eduardo D. Gomes ◽  
Jorge R. Cibrão ◽  
Luís A. Rocha ◽  
Rita C. Assunção-Silva ◽  
...  

AbstractSpinal cord injury (SCI) leads to dramatic impairments of motor, sensory, and autonomic functions of affected individuals. Following the primary injury, there is an increased release of glutamate that leads to excitotoxicity and further neuronal death. Therefore, modulating glutamate excitotoxicity seems to be a promising target to promote neuroprotection during the acute phase of the injury. In this study, we evaluated the therapeutic effect of a FDA approved antiepileptic drug (levetiracetam-LEV), known for binding to the synaptic vesicle protein SV2A in the brain and spinal cord. LEV therapy was tested in two models of SCI—one affecting the cervical and other the thoracic level of the spinal cord. The treatment was effective on both SCI models. Treated animals presented significant improvements on gross and fine motor functions. The histological assessment revealed a significant decrease of cavity size, as well as higher neuronal and oligodendrocyte survival on treated animals. Molecular analysis revealed that LEV acts by stabilizing the astrocytes allowing an effective uptake of the excess glutamate from the extracellular space. Overall, our results demonstrate that Levetiracetam may be a promising drug for acute management of SCI.


Author(s):  
Kathryn L. Lovell ◽  
Margaret Z. Jones

Caprine β-mannosidosis, an autosomal recessive defect of glycoprotein catabolism, is associated with a deficiency of tissue and plasma -mannosidase and with tissue accumulation and urinary excretion of oligosaccharides, including the trisaccharide Man(β1-4)GlcNAc(βl-4)GlcNAc and the disaccharide Man(β1-4)GlcNAc. This genetic disorder is evident at birth, with severe neurological deficits including a marked intention tremor, pendular nystagmus, ataxia and inability to stand. Major pathological characteristics described in Nubian goats in Michigan and in Anglo-Nubian goats in New South Wales include widespread cytoplasmic vacuolation in the nervous system and viscera, axonal spheroids, and severe myelin paucity in the brain but not spinal cord or peripheral nerves. Light microscopic examination revealed marked regional variation in the severity of central nervous system myelin deficits, with some brain areas showing nearly complete absence of myelin and other regions characterized by the presence of 25-50% of the control number of myelin sheaths.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e049882
Author(s):  
Jing Nong Liang ◽  
Savanna Budge ◽  
Austin Madriaga ◽  
Kara Meske ◽  
Derrick Nguyenton ◽  
...  

IntroductionReduced neuromuscular control due to altered neurophysiological functions of the central nervous system has been suggested to cause movement deficits in individuals with patellofemoral pain (PFP). However, the underlying neurophysiological measures of brain and spinal cord in this population remain to be poorly understood. The purpose of this systematic review is to evaluate the evidence for altered cortical and spinal cord functions in individuals with PFP.Methods and analysisThe protocol for conducting the review was prepared using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. We will systematically search the literature that examines cortical and spinal cord functions in individuals with PFP, aged 18–45 years. The studies for cross-sectional, prospective, longitudinal, case–control and randomised control trial designs will be included from the following databases: PubMed (MEDLINE), EMBASE and Web of Science. Only studies published in English prior to 1 February 2021 will be included. The risk of bias and quality assessment will be performed using National Institutes of Health’s Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. We will conduct meta-analysis of the data where appropriate. Narrative synthesis will be taken if a meta-analysis is not possible.Ethics and disseminationThis is a systematic review from the existing literature and does not require ethical approval. The results of this study will be published in a peer-reviewed journal in the field of rehabilitation medicine, sports/orthopaedic medicine or neurology, regardless of the outcome.PROSPERO registration numberCRD42020212128.


2021 ◽  
pp. 102692
Author(s):  
Lijian Zhang ◽  
Francisco R. López-Picón ◽  
Yingqin Jia ◽  
Yao Chen ◽  
Juan Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii41-ii41
Author(s):  
Junjie Zhen ◽  
Lei Wen ◽  
Shaoqun Li ◽  
Mingyao Lai ◽  
Changguo Shan ◽  
...  

Abstract BACKGROUND According to EANO-ESMO clinical practice guidelines, the MRI findings of LM are divided into 4 types, namely linear enhancement (type A), nodular enhancement (type B), linear combined with nodular enhancement (type C), and sign of hydrocephalus (type D). METHODS The MRI features of brain and spinal cord in patients diagnosed with NSCLC-LM in Guangdong Sanjiu Brain Hospital from 2010 until 2019 were investigated, and then were classified into 4 types. The imaging features were analyzed. RESULTS A total of 80 patients were enrolled in the study. The median age of the patients was 53.5 years old, and the median time from the initial diagnosis to the confirmed diagnosis of LM was 11.6 months. The results of enhanced MRI examination of the brain in 79 cases showed that the number of cases with enhancements of type A, B, C and D were 50 (63.3%), 0, 26 (32.9%) and 3 (3.8%), respectively, and that LM with metastases to the brain parenchyma was found in 42 cases (53.2%). The results of enhanced MRI examination of spinal cord in 59 cases showed that there were only enhancements of type A and C in 40 cases (67.8%) and 3 cases (5.0%), and no enhancement sign in the other 16 cases (27.2%). CONCLUSION MRI examination of brain and spinal cord will improve the detection rate of LM. The MRI features of NSCLC-LM in real world are mainly characterized by the linear enhancements of brain and spinal cord, followed by linear combined with nodular enhancement. The enhancements of type B and type D are rare in clinic. Almost half of the patients have LM and metastases to the brain parenchyma. Therefore, the differentiation of tumor metastases is needed to be paid attention to for the early diagnosis and the formulation of reasonable treatment plans.


Sign in / Sign up

Export Citation Format

Share Document