scholarly journals Gender-Related Effects on Substrate Utilization and Metabolic Adaptation in Hairless Spontaneously Hypertensive Rat

2015 ◽  
pp. 51-60 ◽  
Author(s):  
J. TRNOVSKÁ ◽  
J. ŠILHAVÝ ◽  
V. ZÍDEK ◽  
M. ŠIMÁKOVÁ ◽  
P. MLEJNEK ◽  
...  

Cold exposure of rats leads to ameliorated glucose and triglyceride utilization with females displaying better adaptation to a cold environment. In the current study, we used hairless rats as a model of increased thermogenesis and analyzed gender-related effects on parameters of lipid and glucose metabolism in the spontaneously hypertensive (SHR) rats. Specifically, we compared hairless coisogenic SHR-Dsg4 males and females harboring mutant Dsg4 (desmoglein 4) gene versus their SHR wild type controls. Two way ANOVA showed significant Dsg4 genotype (hairless or wild type) x gender interaction effects on palmitate oxidation in brown adipose tissue (BAT), glucose incorporation into BAT determined by microPET, and glucose oxidation in skeletal muscles. In addition, we observed significant interaction effects on sensitivity of muscle tissue to insulin action when Dsg4 genotype affected these metabolic traits in males, but had little or no effects in females. Both wild type and hairless females and hairless males showed increased glucose incorporation and palmitate oxidation in BAT and higher tissue insulin sensitivity when compared to wild type males. These findings provide evidence for gender-related differences in metabolic adaptation required for increased thermogenesis. They are consistent with the hypothesis that increased glucose and palmitate utilization in BAT and muscle is associated with higher sensitivity of adipose and muscle tissues to insulin action.

1987 ◽  
Vol 252 (3) ◽  
pp. R554-R561 ◽  
Author(s):  
W. N. Henley ◽  
A. Tucker

The mechanism by which chronic, moderate, hypobaric hypoxia attenuates systemic systolic blood pressure (SBP) in the spontaneously hypertensive rat (SHR) was investigated in a three-part study. In experiment 1, 10 wk of hypoxia (3,658 m altitude) commencing in 7-wk-old rats was partially effective in preventing the rise in SBP [hypoxic SHR (SHR-H) 154 mmHg vs. normoxic SHR (SHR-N) 180 mmHg; P less than 0.01]. When hypoxia was initiated in 5-wk-old SHR (experiments 2 and 3), protection against hypertension was nearly complete (experiment 2: SHR-H 122 mmHg vs. SHR-N 175 mmHg; P less than 0.001; experiment 3: 135 vs. 152 mmHg, respectively; P less than 0.05). Elevations in O2 consumption (VO2) and rectal temperature (Tre) in SHR vs. normotensive [Wistar-Kyoto (WKY)] rats provided evidence that the SHR is a hypermetabolic animal. Thyroid hormonal indices suggested that SHR changed from a low to high thyroid status at a time that rapid blood pressure elevation occurred; however, hypoxia did not influence thyroid status. Acute, significant decrements in VO2 and Tre in SHR-H (experiments 2 and 3) accompanied the attenuation of SBP by hypoxia, whereas large decrements in VO2 and SBP did not occur in hypoxic WKY. Timely administration of moderate hypoxia protects against the development of hypertension in the SHR. This protection may relate to a metabolic adaptation made by the hypoxic SHR.


2018 ◽  
pp. 417-422 ◽  
Author(s):  
M. PRAVENEC ◽  
K.-Y. LEUNG ◽  
V. ZÍDEK ◽  
P. MLEJNEK ◽  
M. ŠIMÁKOVÁ ◽  
...  

Increased levels of plasma cysteine are associated with obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed a mutated Folr1 (folate receptor 1) as the quantitative trait gene associated with diminished renal Folr1 expression, lower plasma folate levels, hypercysteinemia, hyperhomocysteinemia and metabolic disturbances. To further analyse the effects of the Folr1 gene expression on folate metabolism, we used mass spectrometry to quantify folate profiles in the plasma and liver of an SHR-1 congenic strain, with wild type Folr1 allele on the SHR genetic background, and compared them with the SHR strain. In the plasma, concentration of 5-methyltetrahydrofolate (5mTHF) was significantly higher in SHR-1 congenic rats compared to SHR (60±6 vs. 42±2 nmol/l, P<0.01) and 5mTHF monoglutamate was the predominant form in both strains (>99 % of total folate). In the liver, SHR-1 congenic rats showed a significantly increased level of 5mTHF and decreased concentrations of dihydrofolate (DHF), tetrahydrofolate (THF) and formyl-THF when compared to the SHR strain. We also analysed the extent of folate glutamylation in the liver. Compared with the SHR strain, congenic wild-type Folr1 rats had significantly higher levels of 5mTHF monoglutamate. On the other hand, 5mTHF penta- and hexaglutamates were significantly higher in SHR when compared to SHR-1 rats. This inverse relationship of rat hepatic folate polyglutamate chain length and folate sufficiency was also true for other folate species. These results strongly indicate that the whole body homeostasis of folates is substantially impaired in SHR rats compared to the SHR-1 congenic strain and might be contributing to the associated metabolic disturbances observed in our previous studies.


1996 ◽  
Vol 37 (4) ◽  
pp. 553-553
Author(s):  
Tomoji Mashimo ◽  
Yasuo Nara ◽  
Tomoko Tamada ◽  
Chiho Matsumoto ◽  
Katumi Ikeda ◽  
...  

Hypertension ◽  
1997 ◽  
Vol 30 (4) ◽  
pp. 880-885 ◽  
Author(s):  
Michael S. LaPointe ◽  
Minghao Ye ◽  
Robert Bacallao ◽  
Daniel Batlle

Sign in / Sign up

Export Citation Format

Share Document