scholarly journals Vasopressin Neurons Respond to Hyperosmotic Stimulation with Regulatory Volume Increase and Secretory Volume Decrease by Activating Ion Transporters and Ca2+ Channels

2021 ◽  
Vol 55 (S1) ◽  
pp. 119-134

BACKGROUND/AIMS: Arginine vasopressin (AVP) neurons play an important role for sensing a change in the plasma osmolarity and thereby responding with regulated AVP secretion in order to maintain the body fluid homeostasis. The osmo-sensing processes in magnocellular neurosecretory cells (MNCs) including AVP and oxytocin (OXT) neurons of the hypothalamus were reported to be coupled to sustained osmotic shrinkage or swelling without exhibiting discernible cell volume regulation. Since increasing evidence has shown some important differences in properties between AVP and OXT neurons, osmotic volume responses are to be reexamined with distinguishing these cell types from each other. We previously reported that AVP neurons identified by transgenic expression of enhanced green fluorescence protein (eGFP) possess the ability of regulatory volume decrease (RVD) after hypoosmotic cell swelling. Thus, in the present study, we examined the ability of regulatory volume increase (RVI) after hyperosmotic cell shrinkage in AVP neurons. METHODS: Here, we used eGFP-identified AVP neurons acutely dissociated from AVP-eGFP transgenic rats. We performed single-cell size measurements, cytosolic RT-PCR analysis, AVP secretion measurements, and patch-clamp studies. RESULTS: The AVP neurons were found to respond to a hyperosmotic challenge with physiological cell shrinkage caused by massive secretion of AVP, called a secretory volume decrease (SVD), superimposed onto physical osmotic cell shrinkage, and also to exhibit the ability of RVI coping with osmotic and secretory cell shrinkage. Furthermore, our pharmacological and molecular examinations indicated that AVP secretion and its associated SVD event are triggered by activation of T-type Ca2+ channels, and the RVI event is attained by parallel operation of Na+/H+ exchanger and Cl-/HCO3- anion exchanger. CONCLUSION: Thus, it is concluded that AVP neurons respond to hyperosmotic stimulation with the regulatory volume increase and the secretory volume increase by activating ion transporters and Ca2+ channels, respectively.

2000 ◽  
Vol 279 (1) ◽  
pp. G40-G48 ◽  
Author(s):  
Thorsten Sonnentag ◽  
Wolf-Kristian Siegel ◽  
Oliver Bachmann ◽  
Heidi Rossmann ◽  
Andreas Mack ◽  
...  

Concomitant Na+/H+ and Cl−/HCO3 − exchange activation occurs during stimulation of acid secretion in cultured rabbit parietal cells, possibly related to a necessity for volume regulation during the secretory process. We investigated whether cytoplasmic volume changes occur during secretagogue stimulation of cultured rabbit parietal cells. Cells were loaded with the fluorescent dye calcein, and the calcein concentration within a defined cytoplasmic volume was recorded by confocal microscopy. Forskolin at 10−5 M, carbachol at 10−4 M, and hyperosmolarity (400 mosmol) resulted in a rapid increase in the cytoplasmic dye concentration by 21 ± 6, 9 ± 4, and 23 ± 5%, respectively, indicative of cell shrinkage, followed by recovery to baseline within several minutes, indicative of regulatory volume increase (RVI). Depolarization by 5 mM barium resulted in a decrease of the cytoplasmic dye concentration by 10 ± 2%, indicative of cell swelling, with recovery within 15 min, and completely prevented forskolin- or carbachol-induced cytoplasmic shrinkage. Na+/H+ exchange inhibitors slightly reduced the initial cell shrinkage and significantly slowed the RVI, whereas 100 μM bumetanide had no significant effect on either parameter. We conclude that acid secretagoguges induce a rapid loss of parietal cell cytoplasmic volume, followed by RVI, which is predominantly mediated by Na+/H+ and Cl−/HCO3 − exchange.


1984 ◽  
Vol 246 (3) ◽  
pp. C204-C215 ◽  
Author(s):  
S. Grinstein ◽  
A. Rothstein ◽  
B. Sarkadi ◽  
E. W. Gelfand

The regulatory responses elicited in lymphoid cells suspended in anisotonic media are reviewed. The immediate response approximates osmometric behavior. In addition, in hypotonic media, the initial osmometric swelling is followed by a regulatory volume decrease (RVD), which is associated with KCl loss. The volume-induced effluxes of K+ and Cl- are mediated by two independent conductive pathways. Ca2+-depletion experiments and studies of inhibitor susceptibility suggest that Ca2+ may mediate the activation of the K+ pathway. The responses of the two main lymphocyte subpopulations to hypotonic challenge are different. RVD is much more rapid in T- than in B-cells, regardless of their tissue of origin. Under certain conditions, shrunken lymphocytes will regain their initial volume. This regulatory volume increase (RVI) is due to NaCl uptake, followed by a secondary exchange of Na+ for K+ via the Na+-K+ pump. Na+ is primarily taken up in exchange for H+ through an amiloride-sensitive pathway, whereas Cl- enters in exchange for HCO-3 (or OH-). Anion and cation fluxes responsible for RVI are electroneutral. Some of the volume-sensitive pathways can also be activated in isotonic cells. The conductive K+ pathway is activated by Ca2+ plus ionophore A23187, and the Na+-H+ exchanger can be activated by cytoplasmic acidification. The responses of lymphocytes to anisotonic challenge are compared with those of other cells, and the possible significance of the volume-induced fluxes is discussed.


1986 ◽  
Vol 251 (3) ◽  
pp. C369-C379 ◽  
Author(s):  
B. Kramhoft ◽  
I. H. Lambert ◽  
E. K. Hoffmann ◽  
F. Jorgensen

N-ethylmaleimide (NEM) treatment of steady-state Ehrlich cells induces a substantial net loss of cellular KCl and cell shrinkage. The majority of the initial K loss is Cl dependent. From estimates of membrane potential it is concluded that the NEM-induced KCl loss is electroneutral. The effect of NEM on H extrusion by cells in 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-containing medium showed that only an insignificant part of the K loss could be attributed to an activation of a K-H exchange system. Consequently, NEM appears to activate a K-Cl cotransport, which causes cell shrinkage. The anion preference of the K loss is Cl greater than Br much greater than SCN = NO3. NEM also seems to inhibit a Cl-dependent Na uptake previously described in shrunken cells. Addition of NEM to cells undergoing regulatory volume decrease after swelling in hyposmotic media results in a Cl-dependent acceleration of cell shrinkage, suggesting that a Cl-dependent component of K efflux is induced by NEM also in swollen cells. A Cl-dependent K efflux is also activated in Ca-depleted cells or at reduced extracellular pH after cell swelling. Under isotonic conditions activation of Cl-dependent K flux after Ca depletion or pH reduction could not be demonstrated. The combined results show that Ehrlich cells possess a latent K-Cl cotransport that becomes active after changes in the state of SH groups, regardless of the initial cell volume. A similar K-Cl cotransport is activated in hypotonically swollen cells after Ca depletion or after reduction of the extracellular pH.


2008 ◽  
Vol 295 (6) ◽  
pp. C1528-C1534 ◽  
Author(s):  
Tina Rødgaard ◽  
Kenneth Schou ◽  
Martin B. Friis ◽  
Else K. Hoffmann

The transcription factor, tonicity-responsive enhancer binding protein (TonEBP), is involved in the adaptive response against hypertonicity. TonEBP regulates the expression of genes that catalyze the accumulation of osmolytes, and its transcriptional activity is increased by hypertonicity. The goal of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory volume decrease. Upon return to the original isotonic medium, cells shrank initially, followed by a regulatory volume increase. To maintain cell shrinkage, the RVI process was inhibited as follows: ethyl-isopropyl-amiloride inhibited the Na+/H+ antiport, bumetanide inhibited the Na+-K+-2Cl− cotransporter, and gadolinium inhibited shrinkage-activated Na+ channels. Cells remained shrunken for at least 4 h (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high-NaCl hypertonic medium. We found that TonEBP was strongly activated after 4 and 16 h in cells in high-NaCl hypertonic medium, but not after 4 or 16 h in isotonically shrunken cells. Cells treated with high-NaCl hypertonic medium for 4 h had significantly higher intracellular concentrations of both K+ and Na+ than isotonically shrunken cells. This strongly suggested that an increase in intracellular ionic concentration and not cell shrinkage is involved in TonEBP activation.


1994 ◽  
Vol 266 (5) ◽  
pp. C1210-C1221 ◽  
Author(s):  
J. L. Edelman ◽  
G. Sachs ◽  
J. S. Adorante

The solute and water transport properties of the bovine ciliary epithelium were studied using isolated pigmented (PE) and nonpigmented (NPE) cells. It was shown that these cells were functionally coupled by demonstrating dye diffusion between paired PE and NPE cells after microinjection of lucifer yellow. Electronic cell sizing was used to measure cell volume changes of isolated PE and NPE cells in suspension after anisosmotic perturbations and after transport inhibition under isosmotic conditions. The PE cells showed the presence of a regulatory volume increase when subjected to osmotic shrinkage with NaCl, whereas the NPE cells did not demonstrate a regulatory volume increase under these conditions. In contrast, the NPE cells exhibited a regulatory volume decrease when subjected to osmotic swelling, whereas the PE cells did not recover from swelling. The regulatory volume decrease in NPE cells was inhibited by increased bath K or pretreatment with quinine (1 mM). The presence of a bumetanide-sensitive mechanism capable of moving measurable amounts of solute and water, probably Na-K-2Cl cotransport, was demonstrated in the PE cells but absent in the NPE cells. Bumetanide produced a dose-dependent shrinkage of PE cells at concentrations as low as 1 microM. Isosmotically reducing bath Cl, Na, or K concentration caused a rapid shrinkage of PE cells that was bumetanide inhibitable. The asymmetry of transport properties in PE and NPE cells supports a functional syncytium model of aqueous humor formation (39) across the two layers of the ciliary epithelium wherein ion uptake from the blood is carried out by the PE cells and ion extrusion by the NPE cells. Gap-junction coupling between the cells allows the ions taken up by the PE cells to move into the NPE cells. Extrusion of Na by the Na-K pump across the aqueous facing (basolateral) membranes of the NPE cells, most likely accompanied by Cl, determines the formation of the aqueous humor.


1997 ◽  
Vol 272 (6) ◽  
pp. C1854-C1861 ◽  
Author(s):  
D. G. Seguin ◽  
J. M. Baltz

Mouse zygotes regulate their volumes after cell swelling. This regulatory volume decrease (RVD) is rapid and complete. RVD in zygotes was inhibited by K+ or Cl- channel blockers, indicating the participation of such channels in volume recovery. The channels are separate entities, as indicated by the ability of the cation ionophore gramicidin to restore RVD when K+ channels are blocked but not when Cl- channels are blocked. Intracellular Ca2+ concentration increased with cell swelling. Nevertheless, RVD occurred normally in zygotes loaded with the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, which prevented Ca2+ from increasing above its normal resting concentration. Thus an increase in intracellular Ca2+ is not necessary for zygote RVD; consistent with this, inhibitors of Ca(2+)-activated K+ channels had little or no effect on RVD. RVD in zygotes was also completely inhibited by millimolar amounts of extracellular ATP. ATP has been shown to inhibit current passed by the volume-sensitive organic osmolyte-Cl- channel in other cells, and thus zygotes may have such a channel participating in RVD.


2014 ◽  
Vol 33 (6) ◽  
pp. 1745-1757 ◽  
Author(s):  
Veronica I. Cacace ◽  
Andres G. Finkelsteyn ◽  
Laura M. Tasso ◽  
Carlos F. Kusnier ◽  
Karina A. Gomez ◽  
...  

Physiology ◽  
1989 ◽  
Vol 4 (6) ◽  
pp. 238-242 ◽  
Author(s):  
Y Okada ◽  
A Hazama

Patch-clamp studies showed that the regulatory volume decrease process is closely associated with functions of K+, Cl-, and Ca2+-permeable channels in epithelial cells. Na+-permeable channels in the regulatory volume increase process may also be involved, as deduced from whole cell recordings using intestinal epithelial cells.


1995 ◽  
Vol 105 (4) ◽  
pp. 507-535 ◽  
Author(s):  
F Wehner ◽  
H Sauer ◽  
R K Kinne

We studied the ionic mechanisms underlying the regulatory volume increase of rat hepatocytes in primary culture by use of confocal laser scanning microscopy, conventional and ion-sensitive microelectrodes, cable analysis, microfluorometry, and measurements of 86Rb+ uptake. Increasing osmolarity from 300 to 400 mosm/liter by addition of sucrose decreased cell volumes to 88.6% within 1 min; thereafter, cell volumes increased to 94.1% of control within 10 min, equivalent to a regulatory volume increase (RVI) by 44.5%. This RVI was paralleled by a decrease in cell input resistance and in specific cell membrane resistance to 88 and 60%, respectively. Ion substitution experiments (high K+, low Na+, low Cl-) revealed that these membrane effects are due to an increase in hepatocyte Na+ conductance. During RVI, ouabain-sensitive 86Rb+ uptake was augmented to 141% of control, and cell Na+ and cell K+ increased to 148 and 180%, respectively. The RVI, the increases in Na+ conductance and cell Na+, as well as the activation of Na+/K(+)-ATPase were completely blocked by 10(-5) mol/liter amiloride. At this concentration, amiloride had no effect on osmotically induced cell alkalinization via Na+/H+ exchange. When osmolarity was increased from 220 to 300 mosm/liter (by readdition of sucrose after a preperiod of 15 min in which the cells underwent a regulatory volume decrease, RVD) cell volumes initially decreased to 81.5%; thereafter cell volumes increased to 90.8% of control. This post-RVD-RVI of 55.0% is also mediated by an increase in Na+ conductance. We conclude that rat hepatocytes in confluent primary culture are capable of RVI as well as of post-RVD-RVI. In this system, hypertonic stress leads to a considerable increase in cell membrane Na+ conductance. In concert with conductive Na+ influx, cell K+ is then increased via activation of Na+/K(+)-ATPase. An additional role of Na+/H+ exchange in the volume regulation of rat hepatocytes remains to be defined.


1996 ◽  
Vol 270 (3) ◽  
pp. C866-C877 ◽  
Author(s):  
C. C. Armsby ◽  
A. K. Stuart-Tilley ◽  
S. L. Alper ◽  
C. Brugnara

The decreased osmotic fragility and reduced K+ content of BXD-31 mouse erythrocytes arise from variation at a single genetic locus. We compared ion transport in erythrocytes from BXD-31 mice and the parental strain, DBA/2J. The strains had similar rates for Na-K pump, Na/H exchange, Na-K-2Cl cotransport, Ca2+ activated K+ channel, or AE1-mediated SO4 transport. In contrast, K-Cl cotransport was twice as active in BXD-31 as in DBA/2J cells. Cl- dependent K+ efflux from BXD-31 cells displayed steep activation by acid pH (with maximal transport occurring at pH 6.75), whereas DBA/2J erythrocytes displayed a far less dramatic response to pH. Both strains displayed regulatory volume decrease in response to cell swelling. However, a 62% greater loss of cell K+ via K-Cl cotransport was observed in the BXD-31 strain. Furthermore the decreased osmotic fragility of BXD-31 red blood cells was normalized by treatment with nystatin to achieve normal cell K+ and water content. Thus upregulated K-Cl cotransport induces cell dehydration and K+ deficit in BXD-31 erythrocytes and causes their characteristic resistance to osmotic lysis.


Sign in / Sign up

Export Citation Format

Share Document