Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

2008 ◽  
Vol 295 (6) ◽  
pp. C1528-C1534 ◽  
Author(s):  
Tina Rødgaard ◽  
Kenneth Schou ◽  
Martin B. Friis ◽  
Else K. Hoffmann

The transcription factor, tonicity-responsive enhancer binding protein (TonEBP), is involved in the adaptive response against hypertonicity. TonEBP regulates the expression of genes that catalyze the accumulation of osmolytes, and its transcriptional activity is increased by hypertonicity. The goal of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory volume decrease. Upon return to the original isotonic medium, cells shrank initially, followed by a regulatory volume increase. To maintain cell shrinkage, the RVI process was inhibited as follows: ethyl-isopropyl-amiloride inhibited the Na+/H+ antiport, bumetanide inhibited the Na+-K+-2Cl− cotransporter, and gadolinium inhibited shrinkage-activated Na+ channels. Cells remained shrunken for at least 4 h (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high-NaCl hypertonic medium. We found that TonEBP was strongly activated after 4 and 16 h in cells in high-NaCl hypertonic medium, but not after 4 or 16 h in isotonically shrunken cells. Cells treated with high-NaCl hypertonic medium for 4 h had significantly higher intracellular concentrations of both K+ and Na+ than isotonically shrunken cells. This strongly suggested that an increase in intracellular ionic concentration and not cell shrinkage is involved in TonEBP activation.

2021 ◽  
Vol 55 (S1) ◽  
pp. 119-134

BACKGROUND/AIMS: Arginine vasopressin (AVP) neurons play an important role for sensing a change in the plasma osmolarity and thereby responding with regulated AVP secretion in order to maintain the body fluid homeostasis. The osmo-sensing processes in magnocellular neurosecretory cells (MNCs) including AVP and oxytocin (OXT) neurons of the hypothalamus were reported to be coupled to sustained osmotic shrinkage or swelling without exhibiting discernible cell volume regulation. Since increasing evidence has shown some important differences in properties between AVP and OXT neurons, osmotic volume responses are to be reexamined with distinguishing these cell types from each other. We previously reported that AVP neurons identified by transgenic expression of enhanced green fluorescence protein (eGFP) possess the ability of regulatory volume decrease (RVD) after hypoosmotic cell swelling. Thus, in the present study, we examined the ability of regulatory volume increase (RVI) after hyperosmotic cell shrinkage in AVP neurons. METHODS: Here, we used eGFP-identified AVP neurons acutely dissociated from AVP-eGFP transgenic rats. We performed single-cell size measurements, cytosolic RT-PCR analysis, AVP secretion measurements, and patch-clamp studies. RESULTS: The AVP neurons were found to respond to a hyperosmotic challenge with physiological cell shrinkage caused by massive secretion of AVP, called a secretory volume decrease (SVD), superimposed onto physical osmotic cell shrinkage, and also to exhibit the ability of RVI coping with osmotic and secretory cell shrinkage. Furthermore, our pharmacological and molecular examinations indicated that AVP secretion and its associated SVD event are triggered by activation of T-type Ca2+ channels, and the RVI event is attained by parallel operation of Na+/H+ exchanger and Cl-/HCO3- anion exchanger. CONCLUSION: Thus, it is concluded that AVP neurons respond to hyperosmotic stimulation with the regulatory volume increase and the secretory volume increase by activating ion transporters and Ca2+ channels, respectively.


1984 ◽  
Vol 246 (3) ◽  
pp. C204-C215 ◽  
Author(s):  
S. Grinstein ◽  
A. Rothstein ◽  
B. Sarkadi ◽  
E. W. Gelfand

The regulatory responses elicited in lymphoid cells suspended in anisotonic media are reviewed. The immediate response approximates osmometric behavior. In addition, in hypotonic media, the initial osmometric swelling is followed by a regulatory volume decrease (RVD), which is associated with KCl loss. The volume-induced effluxes of K+ and Cl- are mediated by two independent conductive pathways. Ca2+-depletion experiments and studies of inhibitor susceptibility suggest that Ca2+ may mediate the activation of the K+ pathway. The responses of the two main lymphocyte subpopulations to hypotonic challenge are different. RVD is much more rapid in T- than in B-cells, regardless of their tissue of origin. Under certain conditions, shrunken lymphocytes will regain their initial volume. This regulatory volume increase (RVI) is due to NaCl uptake, followed by a secondary exchange of Na+ for K+ via the Na+-K+ pump. Na+ is primarily taken up in exchange for H+ through an amiloride-sensitive pathway, whereas Cl- enters in exchange for HCO-3 (or OH-). Anion and cation fluxes responsible for RVI are electroneutral. Some of the volume-sensitive pathways can also be activated in isotonic cells. The conductive K+ pathway is activated by Ca2+ plus ionophore A23187, and the Na+-H+ exchanger can be activated by cytoplasmic acidification. The responses of lymphocytes to anisotonic challenge are compared with those of other cells, and the possible significance of the volume-induced fluxes is discussed.


2003 ◽  
Vol 284 (5) ◽  
pp. C1280-C1289 ◽  
Author(s):  
A. P. Seale ◽  
N. H. Richman ◽  
T. Hirano ◽  
I. Cooke ◽  
E. G. Grau

In the tilapia ( Oreochromis mossambicus), as in many euryhaline teleost fish, prolactin (PRL) plays a central role in freshwater adaptation, acting on osmoregulatory surfaces to reduce ion and water permeability and increase solute retention. Consistent with these actions, PRL release is stimulated as extracellular osmolality is reduced both in vivo and in vitro. In the current experiments, a perfusion system utilizing dispersed PRL cells was developed for permitting the simultaneous measurement of cell volume and PRL release. Intracellular Ca2+ was monitored using fura 2-loaded cells under the same conditions. When PRL cells were exposed to hyposmotic medium, an increase in PRL cell volume preceded the increase in PRL release. Cell volume increased in proportion to decreases of 15 and 30% in osmolality. However, regulatory volume decrease was clearly seen only after a 30% reduction. The hyposmotically induced PRL release was sharply reduced in Ca2+-deleted hyposmotic medium, although cell volume changes were identical to those observed in normal hyposmotic medium. In most cells, a rise in intracellular Ca2+ concentration ([Ca2+]i) during hyposmotic stimulation was dependent on the availability of extracellular Ca2+, although small transient increases in [Ca2+]i were sometimes observed upon introduction of Ca2+-deleted media of the same or reduced osmolality. These results indicate that an increase in cell size is a critical step in the transduction of an osmotic signal into PRL release and that the hyposmotically induced increase in PRL release is greatly dependent on extracellular Ca2+.


1986 ◽  
Vol 251 (3) ◽  
pp. C369-C379 ◽  
Author(s):  
B. Kramhoft ◽  
I. H. Lambert ◽  
E. K. Hoffmann ◽  
F. Jorgensen

N-ethylmaleimide (NEM) treatment of steady-state Ehrlich cells induces a substantial net loss of cellular KCl and cell shrinkage. The majority of the initial K loss is Cl dependent. From estimates of membrane potential it is concluded that the NEM-induced KCl loss is electroneutral. The effect of NEM on H extrusion by cells in 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-containing medium showed that only an insignificant part of the K loss could be attributed to an activation of a K-H exchange system. Consequently, NEM appears to activate a K-Cl cotransport, which causes cell shrinkage. The anion preference of the K loss is Cl greater than Br much greater than SCN = NO3. NEM also seems to inhibit a Cl-dependent Na uptake previously described in shrunken cells. Addition of NEM to cells undergoing regulatory volume decrease after swelling in hyposmotic media results in a Cl-dependent acceleration of cell shrinkage, suggesting that a Cl-dependent component of K efflux is induced by NEM also in swollen cells. A Cl-dependent K efflux is also activated in Ca-depleted cells or at reduced extracellular pH after cell swelling. Under isotonic conditions activation of Cl-dependent K flux after Ca depletion or pH reduction could not be demonstrated. The combined results show that Ehrlich cells possess a latent K-Cl cotransport that becomes active after changes in the state of SH groups, regardless of the initial cell volume. A similar K-Cl cotransport is activated in hypotonically swollen cells after Ca depletion or after reduction of the extracellular pH.


1991 ◽  
Vol 260 (1) ◽  
pp. G26-G33 ◽  
Author(s):  
R. J. MacLeod ◽  
J. R. Hamilton

We assessed ion transport during regulatory volume decrease (RVD) in jejunal villus enterocytes, isolated in suspension from guinea pig jejunum and swollen by exposure to L-alanine (L-Ala) or D-glucose (D-Glc) in the presence of Na+. Cell volume was measured electronically. Relative volume of cells (rel vol: cell vol/isotonic vol) within 1 min of L-Ala (20 mM) addition increased (1.10 +/- 0.03, P less than 0.005), but by 5 min there was no difference between cells in L-Ala or 20 mM D-Ala (0.95 +/- 0.02). Cell shrinkage after maximal swelling was greater with L-Ala than with D-Ala (14 +/- 4 vs. 2 +/- 1%, P less than 0.01). Initial swelling generated by L-Ala required extracellular Na+ (P less than 0.02). Volume increased 30 s after D-Glc (20 mM), and cells were larger than cells treated with L-Glc (1.04 +/- 0.01 vs. 0.95 +/- 0.01, P less than 0.001); subsequent cell shrinkage was complete in 2 min (8 +/- 2%, P less than 0.05). Swelling generated by methyl alpha-D-glucoside was prevented by 0.1 mM phloridzin (P less than 0.05). RVD after D-Glc swelling was prevented by inhibitors of K+ channels, 5 mM Ba2+ (P less than 0.001), 100 microM quinine (P less than 0.005), or 25 mM TEA (P less than 0.02), but the same inhibitors completely prevented L-Ala swelling. All inhibitors had no effect on L-Ala uptake into brush-border membrane vesicles in presence of Na+ gradient.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 276 (3) ◽  
pp. E596-E601 ◽  
Author(s):  
Darya Sarfaraz ◽  
Cosmo L. Fraser

Astrocytes initially swell when exposed to hypotonic medium but rapidly return to normal volume by the process of regulatory volume decrease (RVD). The role that arginine vasopressin (AVP) plays in hypotonically mediated RVD in astrocytes is unknown. This study was therefore designed to determine whether AVP might play a role in astrocyte RVD. With the use of 3- O-[3H]methyl-d-glucose to determine water space, AVP treatment resulted in significantly increased 3- O-methyl-d-glucose water space within 30 s of hypotonic exposure ( P = 0.0001) and remained significantly elevated above baseline (1.75 μl/mg protein) at 5 min ( P < 0.021). In contrast, in untreated cells, complete RVD was achieved by 5 min. At 30 s, cell volume with AVP treatment was 37% greater than in cells that received no treatment (2.9 vs. 2.26 μl/mg protein, respectively; P < 0.006). The rate of cell volume increase (dV/d t) over 30 s was highly significant (0.038 vs. 0.019 μl ⋅ mg protein−1 ⋅ s−1in the AVP-treated vs. untreated group; P = 0.0004 by regression analysis). Additionally, the rate of cell volume decrease over the next 4.5 min was also significantly greater with vasopressin treatment (−dV/d t = 0.0027 vs. 0.0013 μl ⋅ mg protein−1 ⋅ s−1; P = 0.0306). The effect of AVP was concentration dependent with EC50= 3.5 nM. To determine whether AVP action was receptor mediated, we performed RVD studies in the presence of the V1-receptor antagonists benzamil and ethylisopropryl amiloride and the V2-receptor agonist 1-desamino-8-d-arginine vasopressin (DDAVP). Both V1-receptor antagonists significantly inhibited AVP-mediated volume increase by 40–47% ( P < 0.005), whereas DDAVP had no stimulatory effects above control. Taken together, these data suggest that AVP treatment of brain astrocytes in culture appears to increase 3- O-methyl-d-glucose water space during RVD through V1receptor-mediated mechanisms. The significance of these findings is presently unclear.


2007 ◽  
Vol 292 (3) ◽  
pp. G711-G717 ◽  
Author(s):  
Oliver Bachmann ◽  
Alexander Heinzmann ◽  
Andreas Mack ◽  
Michael P. Manns ◽  
Ursula Seidler

We have previously shown that stimulation of acid secretion in parietal cells causes rapid initial cell shrinkage, followed by Na+/H+ exchange-mediated regulatory volume increase (RVI). The factors leading to the initial cell shrinkage are unknown. We therefore monitored volume changes in cultured rabbit parietal cells by confocal measurement of the cytoplasmic calcein concentration. Although blocking the presumably apically located K+ channel KCNQ1 with chromanol 293b reduced both the forskolin- and carbachol-induced cell shrinkage, inhibition of Ca2+-sensitive K+ channels with charybdotoxin strongly inhibited the cell volume decrease after carbachol, but not after forskolin stimulation. The cell shrinkage induced by both secretagogues was partially inhibited by blocking H+-K+-ATPase with SCH28080 and completely absent after incubation with NPPB, which inhibits parietal cell anion conductances involved in acid secretion. The subsequent RVI was strongly inhibited with the Na+/H+ exchanger 1 (NHE1)-specific concentration of HOE642 and completely by 500 μM dimethyl-amiloride (DMA), which also inhibits NHE4. None of the above substances induced volume changes under baseline conditions. Our results indicate that cell volume decrease associated with acid secretion is dependent on the activation of K+ and Cl− channels by the respective secretagogues. K+, Cl−, and water secretion into the secretory canaliculi is thus one likely mechanism of stimulation-associated cell shrinkage in cultured parietal cells. The observed RVI is predominantly mediated by NHE1.


1994 ◽  
Vol 266 (5) ◽  
pp. C1210-C1221 ◽  
Author(s):  
J. L. Edelman ◽  
G. Sachs ◽  
J. S. Adorante

The solute and water transport properties of the bovine ciliary epithelium were studied using isolated pigmented (PE) and nonpigmented (NPE) cells. It was shown that these cells were functionally coupled by demonstrating dye diffusion between paired PE and NPE cells after microinjection of lucifer yellow. Electronic cell sizing was used to measure cell volume changes of isolated PE and NPE cells in suspension after anisosmotic perturbations and after transport inhibition under isosmotic conditions. The PE cells showed the presence of a regulatory volume increase when subjected to osmotic shrinkage with NaCl, whereas the NPE cells did not demonstrate a regulatory volume increase under these conditions. In contrast, the NPE cells exhibited a regulatory volume decrease when subjected to osmotic swelling, whereas the PE cells did not recover from swelling. The regulatory volume decrease in NPE cells was inhibited by increased bath K or pretreatment with quinine (1 mM). The presence of a bumetanide-sensitive mechanism capable of moving measurable amounts of solute and water, probably Na-K-2Cl cotransport, was demonstrated in the PE cells but absent in the NPE cells. Bumetanide produced a dose-dependent shrinkage of PE cells at concentrations as low as 1 microM. Isosmotically reducing bath Cl, Na, or K concentration caused a rapid shrinkage of PE cells that was bumetanide inhibitable. The asymmetry of transport properties in PE and NPE cells supports a functional syncytium model of aqueous humor formation (39) across the two layers of the ciliary epithelium wherein ion uptake from the blood is carried out by the PE cells and ion extrusion by the NPE cells. Gap-junction coupling between the cells allows the ions taken up by the PE cells to move into the NPE cells. Extrusion of Na by the Na-K pump across the aqueous facing (basolateral) membranes of the NPE cells, most likely accompanied by Cl, determines the formation of the aqueous humor.


1997 ◽  
Vol 272 (6) ◽  
pp. C1854-C1861 ◽  
Author(s):  
D. G. Seguin ◽  
J. M. Baltz

Mouse zygotes regulate their volumes after cell swelling. This regulatory volume decrease (RVD) is rapid and complete. RVD in zygotes was inhibited by K+ or Cl- channel blockers, indicating the participation of such channels in volume recovery. The channels are separate entities, as indicated by the ability of the cation ionophore gramicidin to restore RVD when K+ channels are blocked but not when Cl- channels are blocked. Intracellular Ca2+ concentration increased with cell swelling. Nevertheless, RVD occurred normally in zygotes loaded with the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, which prevented Ca2+ from increasing above its normal resting concentration. Thus an increase in intracellular Ca2+ is not necessary for zygote RVD; consistent with this, inhibitors of Ca(2+)-activated K+ channels had little or no effect on RVD. RVD in zygotes was also completely inhibited by millimolar amounts of extracellular ATP. ATP has been shown to inhibit current passed by the volume-sensitive organic osmolyte-Cl- channel in other cells, and thus zygotes may have such a channel participating in RVD.


1994 ◽  
Vol 266 (3) ◽  
pp. C676-C683 ◽  
Author(s):  
B. G. Kennedy

To characterize volume regulatory mechanisms, unidirectional Rb+ efflux and influx, unidirectional Cl- influx, and cell volume were measured in cultured human retinal pigment epithelium (HRPE). The HRPE was found to be capable of both regulatory volume increase (RVI), in response to a hypertonic challenge, and regulatory volume decrease (RVD), in response to a hypotonic challenge. Bumetanide-sensitive Rb+ influx increased almost threefold on incubation in a hypertonic (390 mosmol/kgH2O) medium. Bumetanide-insensitive Rb+ influx was activated by hypotonic (190 mosmol/kgH2O) challenge as well as by treatment with N-ethylmaleimide (NEM). Exposure to hypotonic media also activated unidirectional Cl- influx and unidirectional Rb+ efflux. Both the RVD and hypotonically activated Rb+ efflux were inhibited by the K(+)-channel blocker barium. On the other hand, hypotonically activated Rb+ influx was increased by barium treatment. In sum, the HRPE exhibits volume-sensitive transport mechanisms over a range of volumes from 190 to 390 mosmol/kgH2O. Cultured HRPE possess hypertonically activated Na-K-Cl cotransport, hypotonically activated K-Cl cotransport, and a barium-inhibitable hypotonically activated K+ efflux pathway.


Sign in / Sign up

Export Citation Format

Share Document