scholarly journals Retraction of: Effects of MicroRNA-592-5p on Hippocampal Neuron Injury Following Hypoxic-Ischemic Brain Damage in Neonatal Mice - Involvement of PGD2/DP and PTGDR Preconditioning

2021 ◽  
Vol 55 (4) ◽  
pp. 520-520
2010 ◽  
Vol 24 (3) ◽  
pp. 420-426 ◽  
Author(s):  
Cora H. Nijboer ◽  
Cobi J. Heijnen ◽  
Hanneke L.D.M. Willemen ◽  
Floris Groenendaal ◽  
Gerald W. Dorn ◽  
...  

2018 ◽  
Vol 45 (2) ◽  
pp. 458-473 ◽  
Author(s):  
Li-Qun Sun ◽  
Gong-Liang Guo ◽  
Sai Zhang ◽  
Li-Li  Yang

Background/Aims: This study aimed to explore the effect of microRNA-592-5p (miR-592-5p) on hypoxic-ischemic brain damage (HIBD)-induced hippocampal neuronal injury in a neonatal mouse model relative to the involvement of one target gene, PTGDR, and the PGD2/ DP signaling pathway. Methods: A total of 30 neonatal mice aged 7 days were randomly selected to establish an HIBD mouse model. Hippocampal neuronal cells were transfected into a control group, a blank group, a negative control (NC) group, an miR-592-5p mimics group, an miR-592-5p inhibitors group, an siRNA-PTGDR group and an miR-592-5p inhibitors + siRNA-PTGDR group. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analyses were performed to detect the expression levels of miR-592-5p, PTGDR, DP2, Bcl-2 and Bax in tissues and cells. Cell proliferation, cell cycle and apoptosis were detected by MTT assay and flow cytometry, respectively. Results: The expression levels of miR-592-5p and Bcl-2 decreased, while the expression levels of PTGDR, DP2 and Bax increased in the HIBD group. PTGDR is a target gene of miR-592-2p. Compared with the NC and blank groups, the expression levels of PTGDR, DP2 and Bax decreased, while the expression levels of miR-592-5p and Bcl-2 increased in the miR-592-5p mimics group. The siRNA-PTGDR group showed the same trend as that observed in the miR-592-5p mimics group, except with no difference in miR-592-5p expression. The miR-592-5p inhibitors group showed an opposite gene expression trend compared to that in the miR-592-5p mimics group. The S phase of the cell cycle was prolonged, the G1 phase was reduced, proliferation was increased, and the apoptosis rate was decreased in the siRNA-PTGDR and miR-592-5p mimics groups. Opposite trends for cell cycle, proliferation and apoptosis were observed in the miR-592-5p inhibitors group. Conclusions: Our study suggests that miR-592-5p upregulation protects against hippocampal neuronal injury caused by HIBD by targeting PTGDR and inhibiting the PGD2/DP signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Miao Yang ◽  
Wuqing Sun ◽  
Lu Xiao ◽  
Mulan He ◽  
Yan Gu ◽  
...  

Background. Increasing evidence has revealed that mesenchymal stromal cell (MSC) transplantation alleviates hypoxic-ischemic brain damage (HIBD) induced neurological impairments via immunomodulating astrocyte antiapoptosis effects. However, it remains unclear whether MSCs regulate neuron autophagy following HIBD. Results. In the present study, MSC transplantation effectively ameliorated learning-memory function and suppressed stress-induced hippocampal neuron autophagy in HIBD rats. Moreover, the suppressive effects of MSCs on autophagy were significantly weakened following endogenous IL-6 silencing in MSCs. Suppressing IL-6 expression also significantly increased p-AMPK protein expression and decreased p-mTOR protein expression in injured hippocampal neurons. Conclusion. Endogenous IL-6 in MSCs may reduce autophagy in hippocampal neurons partly through the AMPK/mTOR pathway.


2010 ◽  
Vol 68 ◽  
pp. 59-59
Author(s):  
M Winerdal ◽  
M E Winerdal ◽  
A Bierhaus ◽  
O Winqvist ◽  
U Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document