Diverging Ways: On the Trajectories of Ontology in Parmenides, Aristotle, and Deleuze

Author(s):  
Abraham Jacob Greenstine

Abraham Jacob Greenstine’s “Diverging Ways: On the Trajectories of Ontology in Parmenides, Aristotle, and Deleuze” asks what is ontology – how do we speak being? Starting from Deleuze’s claim that there is only one ontology, Greenstine successively interrogates the projects of Parmenides, Aristotle, and Deleuze. These three, in dialogue with one another, agree that there is some discourse on being, but disagree about its scope, method, and content. For Parmenides, ontology is a path to the truth, a narrative that leads us to attributes of being itself. For Aristotle, ontology is a knowledge of the first principles, an account that clarifies the many senses of being in order to recognize the divine cause of being itself. For Deleuze, ontology expresses only a single proposition, and being has but a single attribute: being is univocal. By contrasting these projects, Greenstine seeks to outline ontology as such.

Author(s):  
Alastair DAWSON

ABSTRACT The research of James Croll on the nature of Ice Ages led him into a detailed investigation of ocean currents. By the early 1870s he had calculated from first principles the quantities of heat delivered by ocean currents to high latitude areas and he understood how this heat supply may have altered drastically during ice ages. The publication of his many papers on ocean currents as well as his book, Climate and Time, coincided with Challenger expedition that, in 1872, embarked on a 4-year voyage of scientific exploration of the world's oceans. The expedition was crucially important for Croll since it enabled him to test his theories of ocean circulation using real data. His novel theories of ocean circulation based on this information conflicted with the established views popularly advocated by William Carpenter but they ultimately prevailed. In the many writings of Croll on ocean currents, we encounter, as with other areas of his research, numerous remarkable ideas many decades ahead their time.


2017 ◽  
Vol 95 (12) ◽  
pp. 1208-1214 ◽  
Author(s):  
O.T. Al-Obeidat ◽  
A.S. Sandouqa ◽  
B.R. Joudeh ◽  
H.B. Ghassib ◽  
M.M. Hawamdeh

The quantum second virial coefficient Bq for 3He is calculated from first principles at low density in the temperature range 0.005–10 K. By “first principles”, it is meant that the many-body phase shifts are first determined within the Galitskii–Migdal–Feynman formalism; they are then plugged into the Beth–Uhlenbeck formula for Bq. A positive Bq corresponds to an overall repulsive interaction; a negative Bq represents an overall attractive interaction. The s-wave scattering length a0 is calculated quite accurately as a function of the temperature T. The effect of the (low-density) medium on Bq is studied. Bq is then used to determine the volume of 3He at the saturation curve. The compressibility is evaluated as a measure of the non-ideality of the system.


2007 ◽  
Vol 73 (5) ◽  
pp. 757-772 ◽  
Author(s):  
ALEXEY MISHCHENKO ◽  
AXEL KÖNIES

AbstractA systematic first-principles approach to the many-particle formulation of the gyro-kinetic theory is suggested. The gyro-kinetic many-particle Hamiltonian is derived using the Lie transform technique. The generalized gyro-kinetic equation is obtained following the Born–Bogoliubov–Green–Kirkwood–Yvon approach. The microscopic expression for the self-consistent potential and the polarization density is obtained. It is shown that new terms appear in the gyro-kinetic polarization that can not be derived in the conventional approach. An expression for the collision term is obtained in the Landau approximation.


1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leonard Reuter ◽  
Arne Lüchow

AbstractChemists explaining a molecule’s stability and reactivity often refer to the concepts of delocalization, resonance, and aromaticity. Resonance is commonly discussed within valence bond theory as the stabilizing effect of mixing different Lewis structures. Yet, most computational chemists work with delocalized molecular orbitals, which are also usually employed to explain the concept of aromaticity, a ring delocalization in cyclic planar systems which abide certain number rules. However, all three concepts lack a real space definition, that is not reliant on orbitals or specific wave function expansions. Here, we outline a redefinition from first principles: delocalization means that likely electron arrangements are connected via paths of high probability density in the many-electron real space. In this picture, resonance is the consideration of additional electron arrangements, which offer alternative paths. Most notably, the famous 4n + 2 Hückel rule is generalized and derived from nothing but the antisymmetry of fermionic wave functions.


2011 ◽  
Vol 2 ◽  
pp. 746-754 ◽  
Author(s):  
Mikkel Strange ◽  
Kristian S Thygesen

The calculation of the electronic conductance of nanoscale junctions from first principles is a long-standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron–electron interactions are described by the many-body GW approximation. The conductance follows an exponential length dependence: G n = G c exp(−βn). The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, G c , due to an improved alignment of the molecular energy levels with the metal Fermi energy. The molecular orbitals involved in the tunneling process comprise states delocalized over the carbon backbone and states localized on the amine end groups. We find that dynamic screening effects renormalize the two types of states in qualitatively different ways when the molecule is inserted in the junction. Consequently, the GW transport results cannot be mimicked by DFT calculations employing a simple scissors operator.


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

Density functional theory (DFT) has established itself as a very capable platform for modelling from first principles electronic, optical, mechanical and structural properties of materials. Starting out from the Dirac equation for the many-body system of electrons and nuclei, an effective theory has been developed allowing for materials specific and parameter free simulations of non-magnetic and magnetic solid matter. In this Chapter an introduction will be given to DFT, the Hohenberg-Kohn theorems, the Kohn-Sham equation, and the formalism for how to deal with non-collinear magnetism.


Sign in / Sign up

Export Citation Format

Share Document