scholarly journals Effect of Different Carbon and Nitrogen Sources on Sclerotium rolfsii sacc. Mycelial Growth and Sclerotial Development

2020 ◽  
Vol 9 (1) ◽  
pp. 17-27
Author(s):  
Fakher Ayed ◽  
Hayfa Jabnoun-Khiareddine ◽  
Rania Aydi-Ben Abdallah ◽  
Mejda Daami-Remadi

In vitro studies were conducted on Potato Dextrose Agar using different carbon (C) and nitrogen (N) sources to evaluate their effects on the mycelial growth, and the sclerotial development of three Tunisian Sclerotium rolfsii Sacc. isolates. Radial growth was optimum on basal medium supplemented with ammonium chloride (0.48 gram of nitrogen per liter (g of N.L-1)) as N source but was restricted on L-Arginine and completely inhibited on ammonium acetate amended media (0.48 g N.L-1). Sclerotial initiation occurred from the 3rd to the 12th day of incubation for all tested isolates. Potassium nitrate was the most suitable N source for sclerotial formation whereas sclerotial development was completely inhibited on ammonium acetate amended medium. Optimal sclerotial germination was recorded using L-Arginine (78-80%) followed by L-Asparagine (46-94%) and ammonium chloride (46-88%) as N sources. Nevertheless, the lowest sclerotial germination rate was noted on sodium nitrate and ammonium acetate amended media. As for C sources (16 gram of carbon per liter (g of C.L-1)), optimal radial growth occurred using D-mannitol for Sr1 and Sr2 isolates and maltose for Sr3, but no mycelial growth was recorded using sodium citrate for all isolates. All C sources tested, except sodium citrate, were suitable for sclerotial formation, production, and germination. Mature sclerotia became brownish after 6 to 12 days of incubation and sclerotial production was highest using D-mannitol, maltose, and D-glucose, depending on isolates used, as C sources. Optimal germination of sclerotia was noted using D-glucose, D-mannitol and maltose for Sr1 isolate, maltose for Sr2 and D-glucose and maltose for Sr3. It was concluded that N and C sources are both important factors for the growth of S. rolfsii and its survival.

2018 ◽  
Vol 7 (3) ◽  
pp. 123-129 ◽  
Author(s):  
Fakher Ayed ◽  
Hayfa Jabnoun-Khiareddine ◽  
Rania Aydi-Ben-Abdallah ◽  
Mejda Daami-Remadi

Sclerotium rolfsii is one of the devastating soilborne fungus responsible for significant plant losses. The effects of pH and aeration on pathogen mycelial growth, sclerotial production and germination were investigated for three Tunisian isolates. Optimal mycelial growth occurred at pH 6 for Sr2 and Sr3 isolates and at pH 6-7 for Sr1. Dry mycelial growth was optimum at pH values ranging between 4 and 7. Sclerotial initiation started on the 3rd day of incubation at all pH values tested and mature sclerotia were formed after 6 to 12 days. Optimal sclerotial production was noted at pH 5. The dry weight of 100 sclerotia varied depending on isolates and pH and occurred at pH range 4-7. At pH 9, mycelial growth, sclerotial production and dry weight of 100 sclerotia were restricted. The optimum sclerotial germination, noted after 24 h of incubation, varied depending on isolates and pH and occurred at pH 4-9. Mycelial growth was optimum in aerated plates with a significant isolates x aeration treatments interaction. Sclerotial initiation occurred at the 3rd day of incubation and mature sclerotia were observed after 6-9 days. Sclerotial development was very slow in completely sealed plates and dark sclerotia were produced only after 15 days of incubation. The highest sclerotial yields were noted in aerated plates. The highest dry weight of 100 sclerotia for Sr1 isolate was recorded in ½ sealed, no sealed and completely sealed plates, while for Sr2, it was noted in ½ and ⅔ sealed plates. For Sr3, the maximum dry weight of 100 sclerotia was recorded in ½, ⅔ and completely sealed plates. Germination of S. rolfsii sclerotia, after 24 h of incubation, did not vary significantly depending on aeration treatments and ranged from 90 to 100% for all isolates.


2002 ◽  
Vol 127 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Stephanie G. Harvey ◽  
Heather N. Hannahan ◽  
Carl E. Sams

Allyl isothiocyanate (AITC) is the predominant isothiocyanate produced by damaged tissues of Indian mustard (Brassica juncea (L) Czerniak). This study investigated Indian mustard and AITC mediated suppression of mycelial growth and sclerotial germination of Sclerotium rolfsii Saccardo, a common soilborne pathogen. Indian mustard (IM) treatments of 0, 0.1, 0.2, 0.6, 1.0, 2.0, 4.1, 5.1, 10.2, 20.4, 40.8, 81.6, and 163.3 g·L-1 (weight of reconstituted mustard per liter of air) were evaluated for suppression of mycelial growth. Treatment effect was evaluated by measuring the radial growth of mycelia. Sclerotia were placed in culture tubes containing 18 g autoclaved soil and covered with an additional 5 g soil. AITC at concentrations of 0, 4.0, 16.0, 64.0, 256.0, 1024.0, or 4096.0 μmol·L-1 was injected into the tubes. Treated sclerotia were removed from tubes and plated on potato dextrose agar to determine viability. Mycelial growth was inhibited with IM treatments (P < 0.01). Inhibiting concentrations (IC) of IM for mycelial growth inhibition of 50% and 90% were 0.7 and 1.0 g·L-1, respectively, with death resulting with >2 g·L-1. Inhibition attributable to AITC alone was lower than that achieved by IM producing equivalent amounts of AITC. Germination of sclerotia was negatively correlated with AITC concentration (r = 0.96; P < 0.01). The IC50 and IC90, of AITC were 249.0 and 528.8 μmol·L-1, respectively, at 42 hours. The lethal concentration for sclerotia was not reached; only suppression occurred at the highest treatment concentrations. Sclerotium rolfsii mycelia were sensitive to the IM volatiles and were suppressed at low concentrations. Sclerotia were more resistant than the mycelia and required higher concentrations of AITC to suppress germination.


1970 ◽  
Vol 36 (3) ◽  
pp. 389-396 ◽  
Author(s):  
BK Goswami ◽  
MM Rahaman ◽  
AKMA Hoque ◽  
K Bhuiyan ◽  
IH Mian

An experiment was conducted to find out variation in isolated Rhizoctonia solani based on radial mycelial growth and sclerotial production. Five isolates of Rhizoctonia solani representing five clusters group were selected and were grown at different levels of temperature and pH on potato dextrose agar (PDA). It was observed that optimum temperature and pH for growth and scierotial production varied among the isolates. The rates of growth and sclerotial formation were not uniform at the same levels of the two growth factors. The maximum mycelial growth of all isolates was found at 30°C. At 35°C, only GAZ-9 and GAZ-18 showed initiation of growth, but the rate was very slow. The optimum temperature for sclerotial production of the isolates GAZ-9, JES- 16, GAZ-18 SYL-26 was 30°C and for the isolate DIN-8 was 25°C. The optimum pH for maximum radial growth was 6 for DIN-8 and 7 for other four isolates. The maximum number of sclerotia was produced by DIN-8, GAZ-9, and SYL-30 at pH 8, 4, and 7, respectively. The optimum pH for sclerotia formation in JES-16 and GAZ-18 was pH 6. Keywords: Rhizoctonia solani; variations; temperature; pH. DOI: http://dx.doi.org/10.3329/bjar.v36i3.9267 BJAR 2011; 36(3): 389-396


2004 ◽  
Vol 29 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Luiz E. B Blum ◽  
Rodrígo Rodríguez-Kábana

The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum.


1985 ◽  
Vol 12 (1) ◽  
pp. 32-35 ◽  
Author(s):  
A. S. Csinos

Abstract Tolclofos-methyl was compared to PCNB in vitro to determine its relative activity against four isolates of Sclerotium rolfsii Sacc. and two isolates of Rhizoctonia solani Kuehn. Concentrations of 0.001, 0.01, 0.1, 1.0 and 10 μg/mL of each of the fungicides were used to evaluate their effects on radial growth on both S. rolfsii and R. solani and their effects on sclerotia formation and sclerotial germination of S. rolfsii. Little difference in efficacy between the fungicides occurred for S. rolfsii. However, tolclofos-methyl reduced radial growth of R. solani more than PCNB at concentrations of 0.1 and 1.0 μg/mL. In field tests in 1982 and 1984 tolclofos-methyl at 5.6 kg ai/ha or less was as effective or superior to PCNB or PCNB-fensulfothion in reducing incidence of southern stem rot and increasing yield. In 1984, tolclofos-methyl at 8.4 kg ai/ha reduced Rhizotonia limb rot damage over the control, but PCNB at 11.2 kg ai/ha did not.


2018 ◽  
Vol 10 (1) ◽  
pp. 307-312
Author(s):  
Shiva Kant Kushwaha ◽  
Sanjeev Kumar ◽  
Balkishan Chaudhary

Three biocontrol agents viz., Trichoderma viride, T. virens and T. harzianum were evaluated to test the antagonism against Sclerotium rolfsii under in vitro conditions. All the three antagonists’ viz., T. viride, T. virens and T. harzianum have shown the potential of parasitizing the growth of Sclerotium rolfsii in vitro. The rate of inhibition was fastest in T. harzianum (63.60%) followed by T virens (51.5 %). Least inhibition was recorded in T. viride (50.85% ) after 72 hours of incubation. However, T. viride showed the highest (91.31%) reduction in sclerotia formation followed by T. harzianum (84.92%) and T. virens (84.29%) after 15 days of incubation. The volatile compounds from Trichoderma viride were found most effective in suppressing the mycelial growth (51.11%) and sclerotia production (95.90%) of the target pathogen. The culture filtrate from both T. harzianum and T. viride (15% concentration) was found very effective in inhibiting the radial growth (57.46 and 49.62%) and sclerotia formation (98.20 and 99.83%) of Sclerotium rolfsii. The antagonists such as T. harzianum and T. viride can be used as a bio-control agent against S. rolfsii under field condition.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


Sign in / Sign up

Export Citation Format

Share Document