sclerotial development
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Zhang ◽  
Panpan Zhu ◽  
Boning Cao ◽  
Shuyu Ma ◽  
Ruolan Li ◽  
...  

Sclerotinia diseases are important plant fungal diseases that, causes huge economic worldwide losses every year. Ciboria shiraiana is the main pathogen that results in mulberry sclerotia diseases. Sclerotia and appressoria play important roles in long-term pathogen survival and in host infection during life and disease cycles. However, the molecular mechanisms of sclerotial development and appressoria formation in C. shiraiana have not been well studied. Here, an Asm1p, Phd1p, Sok2p, Efg1p and StuAp (APSES)-type transcription factor in C. shiraiana, CsXbp1, involved in sclerotial development and appressoria formation was functionally characterized. Bioinformatics analyses showed that CsXbp1 contained an APSES-type DNA binding domain. The expression levels of CsXbp1 were higher in sclerotia and during later stages of infection. Compared with wild-type strains, hyphal growth was slower, the number and weight of sclerotia were reduced significantly, and appressoria formation was obviously delayed in CsXbp1 RNA interference (RNAi) strains. Moreover, the CsXbp1 RNAi strains showed weakened pathogenicity owing to compound appressoria defects. Tobacco rattle virus-mediated host-induced gene silencing enabled Nicotiana benthamiana to increase its resistance to C. shiraiana by reducing the CsXbp1 transcripts level. Thus, CsXbp1 plays vital roles in sclerotial formation, appressoria formation, and pathogenicity in C. shiraiana. This study provides new insights into the infection mechanisms of C. shiraiana and plant resistance breeding.


2021 ◽  
Vol 69 (4) ◽  
pp. 1430-1440
Author(s):  
Jiamei Tian ◽  
Caixia Chen ◽  
Huiying Sun ◽  
Zehao Wang ◽  
Siegrid Steinkellner ◽  
...  

2020 ◽  
Vol 144 ◽  
pp. 103471
Author(s):  
Zihao Xia ◽  
Zehao Wang ◽  
Nat N.V. Kav ◽  
Chengsong Ding ◽  
Yue Liang

Author(s):  
Md. Rabiul Islam ◽  
Ananya Prova ◽  
Md. Tanbir Rubayet ◽  
Md. Mahidul Islam Masum ◽  
Md. Motaher Hossain

A new disease causing the tan to light brown blighted stems and pods has occurred in 2.6% pea (Pisum sativum L.) plants with an average disease severity rating of 3.7 in Chapainawabganj district, Bangladesh. A fungus with white appressed mycelia and large sclerotia was consistently isolated from symptomatic tissues. The fungus formed funnel-shaped apothecia with sac-like ascus and endogenously formed ascospores. Healthy pea plants inoculated with the fungus produced typical white mold symptoms. The internal transcribed spacer sequences of the fungus were 100% similar to that recovered from an epitype of Sclerotinia sclerotiorum, considering the fungus to be the causative agent of white mold. Mycelial growth and sclerotial development of S. sclerotiorum were favored at 20°C and pH 5.0. Glucose was the best carbon sources to support hyphal growth and sclerotia formation. Bavistin and Amistar Top inhibited the radial growth of the fungus completely at the lowest concentration. In planta, foliar application of Amistar Top showed the considerable potential to control the disease at 1.0% concentration until 7 days after spraying, while Bavistin prevented infection significantly until 15 days after spraying. A large majority (70.93%) of genotypes including tested released pea cultivars were susceptible, while six genotypes (6.98%) appeared resistant to the disease. These results could be important for management strategies aiming to control the incidence of S. Sclerotinia and eliminate yield loss in pea.


2020 ◽  
Vol 9 (1) ◽  
pp. 17-27
Author(s):  
Fakher Ayed ◽  
Hayfa Jabnoun-Khiareddine ◽  
Rania Aydi-Ben Abdallah ◽  
Mejda Daami-Remadi

In vitro studies were conducted on Potato Dextrose Agar using different carbon (C) and nitrogen (N) sources to evaluate their effects on the mycelial growth, and the sclerotial development of three Tunisian Sclerotium rolfsii Sacc. isolates. Radial growth was optimum on basal medium supplemented with ammonium chloride (0.48 gram of nitrogen per liter (g of N.L-1)) as N source but was restricted on L-Arginine and completely inhibited on ammonium acetate amended media (0.48 g N.L-1). Sclerotial initiation occurred from the 3rd to the 12th day of incubation for all tested isolates. Potassium nitrate was the most suitable N source for sclerotial formation whereas sclerotial development was completely inhibited on ammonium acetate amended medium. Optimal sclerotial germination was recorded using L-Arginine (78-80%) followed by L-Asparagine (46-94%) and ammonium chloride (46-88%) as N sources. Nevertheless, the lowest sclerotial germination rate was noted on sodium nitrate and ammonium acetate amended media. As for C sources (16 gram of carbon per liter (g of C.L-1)), optimal radial growth occurred using D-mannitol for Sr1 and Sr2 isolates and maltose for Sr3, but no mycelial growth was recorded using sodium citrate for all isolates. All C sources tested, except sodium citrate, were suitable for sclerotial formation, production, and germination. Mature sclerotia became brownish after 6 to 12 days of incubation and sclerotial production was highest using D-mannitol, maltose, and D-glucose, depending on isolates used, as C sources. Optimal germination of sclerotia was noted using D-glucose, D-mannitol and maltose for Sr1 isolate, maltose for Sr2 and D-glucose and maltose for Sr3. It was concluded that N and C sources are both important factors for the growth of S. rolfsii and its survival.


2019 ◽  
Vol 229 ◽  
pp. 126326 ◽  
Author(s):  
Bruna Sousa Melo ◽  
Aline Raquel Voltan ◽  
Walquiria Arruda ◽  
Fabyano Alvares Cardoso Lopes ◽  
Raphaela Castro Georg ◽  
...  

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Hyunkyu Sang ◽  
Hao-Xun Chang ◽  
Martin I. Chilvers

ABSTRACT Sclerotinia sclerotiorum is a plant-pathogenic ascomycete fungus and infects over 400 host plants, including pea (Pisum sativum L.). The fungus causes white mold on pea, and substantial yield loss is attributed to the disease. To improve white mold management, further understanding of S. sclerotiorum pathogenicity is crucial. In this study, 389 transcription factors (TFs) were mined from the complete genome sequence of S. sclerotiorum and their in planta expression patterns were determined in susceptible and partially resistant pea lines and compared to in vitro expression patterns on culture medium. One of the transcription factors was significantly induced in planta at 24 and 48 h postinfection compared to the expression in vitro. This putative C6 transcription factor of S. sclerotiorum (SsC6TF1) was knocked down using a gene-silencing approach to investigate its functions in vegetative growth and sclerotial development as well as its virulence and pathogenicity in pea. While the SsC6TF1 knockdown mutants had hyphal growth rates identical to those of the wild-type strain and were capable of infection, the knockdown mutants produced no sclerotia or significantly fewer and smaller sclerotia on the culture medium and exhibited reduced virulence on both pea lines. This study profiled genome-wide expression for S. sclerotiorum transcription factors in planta and in vitro and functionally characterized a novel transcription factor, SsC6TF1, which positively regulates sclerotial development and virulence on pea. The finding provides molecular insights into S. sclerotiorum biology and interaction with pea and other economically important crops. IMPORTANCE White mold, caused by Sclerotinia sclerotiorum, is a destructive disease on important legume species such as soybean, dry bean, and pea. This study investigated expression levels of transcription factors in S. sclerotiorum in planta (pea lines) and in vitro (culture medium). One transcription factor displaying high expression in planta was found to be involved in sclerotial development and virulence on pea. This report provides a new understanding regarding transcription factors of S. sclerotiorum in development and virulence.


Sign in / Sign up

Export Citation Format

Share Document