scholarly journals IMPACT OF NUTRIENT LOAD COMING FROM GÖKSU RIVER ON THE NORTHEASTERN MEDITERRANEAN

Author(s):  
Ece KILIÇ ◽  
Nebil YÜCEL
Keyword(s):  
2005 ◽  
Vol 113 (S 1) ◽  
Author(s):  
S Petersenn ◽  
B Wallner ◽  
IM Range ◽  
H Tourne ◽  
N Unger ◽  
...  

2018 ◽  
Vol 599 ◽  
pp. 49-64 ◽  
Author(s):  
R Jiménez-Ramos ◽  
LG Egea ◽  
JJ Vergara ◽  
FG Brun
Keyword(s):  

2021 ◽  
Vol 9 (2) ◽  
pp. 178
Author(s):  
Roberta Trani ◽  
Giuseppe Corriero ◽  
Maria Concetta de Pinto ◽  
Maria Mercurio ◽  
Carlo Pazzani ◽  
...  

Sponges are an important constituent of filter-feeder benthic communities, characterized by high ecological plasticity and abundance. Free bacteria constitute an important quota of their diet, making them excellent candidates in aquaculture microbial bioremediation, where bacteria can be a serious problem. Although there are studies on this topic, certain promising species are still under investigation. Here we report applied microbiological research on the filtering activity of Sarcotragus spinosulus on two different concentrations of the pathogenic bacterium Vibrio parahaemolyticus in a laboratory experiment. To evaluate the effects of the filtration on the surrounding nutrient load, the release of ammonium, nitrate, and phosphate was also measured. The results obtained showed the efficient filtration capability of S. spinosulus as able to reduce the Vibrio load with a maximum retention efficiency of 99.72% and 99.35% at higher and lower Vibrio concentrations, respectively, and remarkable values of clearance rates (average maximum value 45.0 ± 4.1 mL h−1 g DW−1) at the highest Vibrio concentration tested. The nutrient release measured showed low values for each considered nutrient category at less than 1 mg L−1 for ammonium and phosphate and less than 5 mg L−1 for nitrate. The filtering activity and nutrient release by S. spinosulus suggest that this species represents a promising candidate in microbial bioremediation, showing an efficient capability in removing V. parahaemolyticus from seawater with a contribution to the nutrient load.


2018 ◽  
Vol 52 (5-6) ◽  
pp. 3369-3387 ◽  
Author(s):  
Sofia Saraiva ◽  
H. E. Markus Meier ◽  
Helén Andersson ◽  
Anders Höglund ◽  
Christian Dieterich ◽  
...  

2021 ◽  
Vol 494 ◽  
pp. 119312
Author(s):  
C. Deval ◽  
E.S. Brooks ◽  
J.A. Gravelle ◽  
T.E. Link ◽  
M. Dobre ◽  
...  

1992 ◽  
Vol 55 (2) ◽  
pp. 461-467 ◽  
Author(s):  
D J Jenkins ◽  
A Ocana ◽  
A L Jenkins ◽  
T M Wolever ◽  
V Vuksan ◽  
...  

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 1167-1169 ◽  
Author(s):  
H. E. M. Meier ◽  
K. Eilola ◽  
E. Almroth-Rosell ◽  
S. Schimanke ◽  
M. Kniebusch ◽  
...  

Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


Sign in / Sign up

Export Citation Format

Share Document