Impact of climate change on streamflow and water quality in the upper Dong Nai river basin, Vietnam

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.

Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 38 ◽  
Author(s):  
Olkeba Leta ◽  
Willy Bauwens

Integrating hydrology with climate is essential for a better understanding of the impact of present and future climate on hydrological extremes, which may cause frequent flooding, drought, and shortage of water supply. This study assessed the impact of future climate change on the hydrological extremes (peak and low flows) of the Zenne river basin (Belgium). The objectives were to assess how climate change impacts basin-wide extreme flows and to provide a detailed overview of the impacts of four future climate change scenarios compared to the control (baseline) values. The scenarios are high (wet) summer (projects a future with high storm rain in summer), high (wet) winter (predicts a future with high rainfall in winter), mean (considers a future with intermediate climate conditions), and low (dry) (projects a future with low rainfall during winter and summer). These scenarios were projected by using the Climate Change Impact on HYDRological extremes perturbation tool (CCI-HYDR), which was (primarily) developed for Belgium to study climate change. We used the Soil and Water Assessment Tool (SWAT) model to predict the impact of climate change on hydrological extremes by the 2050s (2036–2065) and the 2080s (2066–2095) by perturbing the historical daily data of 1961–1990. We found that the four climate change scenarios show quite different impacts on extreme peak and low flows. The extreme peak flows are expected to increase by as much as 109% under the wet summer scenario, which could increase adverse effects, such as flooding and disturbance of the riverine ecosystem functioning of the river. On the other hand, the low (dry) scenario is projected to cause a significant decrease in both daily extreme peak and low flows, by as much as 169% when compared to the control values, which would cause problems, such as droughts, reduction in agricultural crop productivity, and increase in drinking water and other water use demands. More importantly, larger negative changes in low flows are predicted in the downstream part of the basin where a higher groundwater contribution is expected, indicating the sensitivity of a basin to the impact of climate change may vary spatially and depend on basin characteristic. Overall, an amplified, as well as an earlier, occurrence of hydrological droughts is expected towards the end of this century, suggesting that water resources managers, planners, and decision makers should prepare appropriate mitigation measures for climate change for the Zenne and similar basins.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


2014 ◽  
Vol 142 (10) ◽  
pp. 2013-2023 ◽  
Author(s):  
W. YU ◽  
P. DALE ◽  
L. TURNER ◽  
S. TONG

SUMMARYRoss River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.


2021 ◽  
Vol 13 (24) ◽  
pp. 14025
Author(s):  
Fazlullah Akhtar ◽  
Usman Khalid Awan ◽  
Christian Borgemeister ◽  
Bernhard Tischbein

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.


Author(s):  
Irvin Alberto Mosquera ◽  
Luis V. S. Sagrilo ◽  
Paulo M. Videiro ◽  
Fernando Sousa

Abstract Design life of offshore structures is in general in the 20-30 years range, with some cases going up to 50 years. Fatigue is one of the major design criteria for such structures. Climate change may affect the fatigue life of offshore structures, it would be necessary to update the design procedures to take into account climate change effects on structural performance. This paper aims to investigate the impact of climate change in the long-term fatigue life of offshore structures due to wave loading. For this purpose, available environmental conditions for two locations (South East Brazilian Coast and North Atlantic Ocean) generated by the HadGEM-2S global climate model, considering RCP 4.5 and RCP 8.5 (Representative Concentration Pathway - RCP) future scenarios and the historical (past) scenarios are considered. The assessment in both locations is performed for two structural models: an idealized stress spectrum for a generic fatigue hot-spot and a Steel Lazy Wave Riser (SLWR) connected to a Floating Production Storage and Offloading (FPSO). Fatigue life is estimated using the S-N curve approach. Results show that the impact on the fatigue life depends on the structure dynamic characteristics, on the geographic location and mainly on the greenhouse emission scenario. In general, for the Brazilian location, when compared to the historical scenario, most of the future scenarios lead to slightly higher fatigue damages (lower fatigue lives). On the other hand, for the North Atlantic location, there is not a clear trend for future climate change scenarios.


2021 ◽  
Vol 13 (7) ◽  
pp. 3885
Author(s):  
Christos Spyrou ◽  
Michael Loupis ◽  
Νikos Charizopoulos ◽  
Ilektra Apostolidou ◽  
Angeliki Mentzafou ◽  
...  

Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge.


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2019 ◽  
Vol 98 ◽  
pp. 06014
Author(s):  
Yali Woyessa

The main aim of this paper is to assess the impact of regional climate change scenarios on the availability of water resources in a semi-arid river basin in South Africa using a hydrological model called Soil and Water Assessment Tool (SWAT). In this paper, climate change data was derived from two downscaling approaches, namely statistical downscaling experiment (SDE) and dynamic downscaling (CORDEX). These were derived from the GCM simulations of the Coupled Model Inter-comparison Project Phase-5 (CMIP5) and across two greenhouse gas emission scenarios known as Representative Concentration Pathways (RCP) 4.5 and 8.5. The spatial resolution of the dataset for the SDE method is 25 km × 25 km and 50 km × 50 km for the CORDEX method. Six GCM models were used for SDE set of data and four for the CORDEX set of data. SWAT model was run using these data for a period of up to mid-century (2020 – 2050) for SDE and for a period of up to the end of this century (2020 – 2100) for CORDEX data. The results were then compared with long-term historical data (1975-2005). Comparison of measured data with simulated historical data showed strong correlation (R2 = 0.95 for SDE data and R2 = 0.92 for CORDEX data), which is indicative of the reliability of projected future climate.


Sign in / Sign up

Export Citation Format

Share Document