scholarly journals Society Awareness and Acceptance on the Concepts of Water Sensitive Urban Drainage Design (WSUD) in Sarawak

2014 ◽  
Vol 5 (2) ◽  
pp. 16-21
Author(s):  
Sheryl Den ◽  
Onni S. Selaman ◽  
Darrien Y. S. Mah

 Water Sensitive Urban Design (WSUD) is a green approach to land development. Since introduced, the approach had been in practice in Peninsular Malaysia and Sabah, but not in favor yet in Sarawak. This study aims to identify Sarawak’s society awareness and acceptance on the WSUD approach. Surveys are being distributed to respondents with engineering and non-engineering background. Scenarios involving five WSUD approaches, namely: (i) Swale Underground Drain; (ii) Rainwater Underground Storage; (iii) Dry Detention Pond; (iv) Porous Pavement; and (v) Infiltration Trench, are being presented to the respondents. At the initial stage of the survey, only 29% of respondents with Civil Engineering background and 20% of respondent without Civil Engineering background recognize the concept but after being exposed to some WSUD approaches throughout the survey 99% of both respondents with and without Civil Engineering background agrees that the approach is beneficial and should be encouraged in Sarawak.

2007 ◽  
pp. 851-861
Author(s):  
Olof J. Jonasson ◽  
Peter Davies

In Australia, Water Sensitive Urban Design (WSUD) or Sustainable Urban Drainage (SUDS)is being used to integrate urban drainage and water supply infrastructure planning and designwith elements of hydrology, ecology, land use planning and landscaping, To support thisdirection, various National and State guidelines and legislation have been developed that areaimed at changing traditional engineering and urban design practice,Recent droughts affecting most of Eastern Australia, including three capital cities, has led to afocus on urban water management. This has increased the attention and recognition ofintegrated water management including water conservation, demand management,diversification of supply, protecting environmental flows and improving water quality at thereceiving bodies. Within Australia, stormwater reuse is being promoted as one way to lessenthe demand on drinking water supplies for non-potable uses. Important for urban areas is theneed for appropriate levels of treatment (depending on use) and sufficient storage to provide areliable supply. From an integrated water management perspective such projects can havemultiple benefits through managing the discharge and improving the quality from lowfrequent storms at the local scale while providing broader water conservation gains across theurban area.This paper discusses two case studies from Australia that have applied integrated watermanagement principles within an existing urban catchment. These include a stormwaterharvesting project to irrigate a sports field and a car park bioretention system to treat roadrunoff before it discharges to a natural stream.


2016 ◽  
Vol 7 (1) ◽  
pp. 30-38
Author(s):  
Darrien Yau Seng Mah ◽  
Boon Yee Koh ◽  
Frederik Josep Putuhena ◽  
Nor Azalina Rosli

 This study has been made in order to pursue practices in Water Sensitive Urban Design (WSUD), where stormwater management becomes a mainstream in Malaysia. The main focus of this study is to develop a stormwater conveyance model incorporating porous pavement and on-site detention system at Heights Drive (Stutong), Kuching City, and to investigate its effectiveness. Conventional pavements are impervious and create contaminated runoff. In contrast, combination of porous pavement with storage as WSUD approach allows stormwater to percolate to an underlying detention system where stormwater is both infiltrated to underlying clay soil and discharged with a lower rate to drain beside the road. Nine roads with total surface area of 12,660 m2 are selected and a total of 6 scenarios are modelled and simulated using EPA’s SWMM 5.0. It is found that the peak discharge at outfall from the study area is decreased by 23%, in which 2% of the stormwater is infiltrated to the ground for groundwater recharge.


Urban Science ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Hadi Zamanifard ◽  
Edward A. Morgan ◽  
Wade L. Hadwen

Modern stormwater treatment assets are a form of water sensitive urban design (WSUD) features that aim to reduce the volumes of sediment, nutrients and gross pollutants discharged into receiving waterways. Local governments and developers in urban areas are installing and maintaining a large number of stormwater treatment assets, with the aim of improving urban runoff water quality. Many of these assets take up significant urban space and are highly visible and as a result, community acceptance is essential for effective WSUD design and implementation. However, community perceptions and knowledge about these assets have not been widely studied. This study used a survey to investigate community perceptions and knowledge about stormwater treatment assets in Brisbane, Australia. The results suggest that there is limited community knowledge of these assets, but that communities notice them and value their natural features when well-maintained. This study suggests that local governments may be able to better inform residents about the importance of these assets, and that designing for multiple purposes may improve community acceptance and support for the use of Council funds to maintain them.


2020 ◽  
Vol 25 (7) ◽  
pp. 04020030
Author(s):  
James C. Y. Guo ◽  
Wen Liang Wang ◽  
Jun Qi Li

2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


Author(s):  
Shinyi Lee ◽  
Tan Yigitcanlar

Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.


2021 ◽  
Vol 26 (2) ◽  
pp. 183-193
Author(s):  
Desyta Ulfiana ◽  
Yudi Eko Windarto ◽  
Nurhadi Bashit ◽  
Novia Sari Ristianti

Klaten Regency is one of the regions that has a high level of flood vulnerability. The area of Klaten Regency which is huge and has diverse characteristics makes it difficult to determine an appropriate flood management model. Water Sensitive Urban Design (WSUD) is a model that focuses on handling water management problems with environmentally friendly infrastructure. Therefore, an analysis is carried out to determine the level of flood vulnerability and factors causing flooding to plan a WSUD design that is suitable for each sub-districts of Klaten Regency. The Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods are used to help the analysis. Aspects used as criteria are rainfall, slope, soil type, geological conditions, and land use. Based on the analysis, it could be concluded that Klaten Regency has two sub-districts with high flood hazard category, 21 sub-districts with medium category, and three sub-districts with low category. Bayat and Cawas are sub-districts that have a high level of flood vulnerability category. Meanwhile, Kemalang, Karangnongko and Polanharjo are districts with a low level of flood vulnerability category. The main factors causing flooding in Klaten Regency are slope and land use.


Sign in / Sign up

Export Citation Format

Share Document