scholarly journals DESIGNING ANNULAR ELASTIC VALVE THAT CONTROLS AIR EXHAUST FROM WORKING CHAMBER OF PNEUMATIC IMPACT MACHINE

2021 ◽  
Vol 2 (4) ◽  
pp. 78-86
Author(s):  
Alexander Yu. Primychkin

The paper considers one of the promising shut-off and control elements of the air distribution system of pneumatic impact machines - an annular elastic valve (CUV). This element allows you to reduce the energy consumption of pneumatic devices. Unfavorable combinations of factors that hinder the movement of the valve necessary for sealing the working chamber are considered. The paper presents a method for calculating the elastic valve that controls the release of energy from the return chamber of the pneumatic impact machine, which allows determining the main geometric dimensions of the valve device at the design stage, which provides a stable self-oscillating cycle of the pneumatic impact machine with the specified energy characteristics. The developed technique was used in the modernization of the air distribution system of the ring impact machine (KUM), designed for immersion of rod elements in the ground. Tests of the resulting sample in production conditions confirmed the increase in energy performance compared to previously produced machines of a similar type.

2019 ◽  
Vol 2 (5) ◽  
pp. 98-102
Author(s):  
Alexander Chervov

In paper short description of construction and functioning of pneumatic hammer with air distribution system based on application of elastic valve in exhaust line of reverse chamber is carried out. Using specified parameters of pneumatic hammer (percussion energy, percussion speed, ration of chamber squares, form of working chamber, compressed air pressure and etc.) mass of striking pin, working path, diameters of working chamber and cylindrical part of reverse chamber, dimensions of circle elastic valve are calculated. Proposed method of calculation considers change of cross-section of reverse chamber when striking pin moves back. Obtained calculated values have allowed to develop diagram chart of change of air pressure in reverse chamber in dependence on time.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59
Author(s):  
Abraham Yezioro ◽  
Isaac Guedi Capeluto

Improving the energy efficiency of existing and new buildings is an important step towards achieving more sustainable environments. There are various methods for grading buildings that are required according to regulations in different places for green building certification. However, in new buildings, these rating systems are usually implemented at late design stages due to their complexity and lack of integration in the architectural design process, thus limiting the available options for improving their performance. In this paper, the model ENERGYui used for design and rating buildings in Israel is presented. One of its main advantages is that it can be used at any design stage, including the early ones. It requires information that is available at each stage only, as the additional necessary information is supplemented by the model. In this way, architects can design buildings in a way where they are aware of each design decision and its impact on their energy performance, while testing different design directions. ENERGYui rates the energy performance of each basic unit, as well as the entire building. The use of the model is demonstrated in two different scenarios: an office building in which basic architectural features such as form and orientation are tested from the very beginning, and a residential building in which the intervention focuses on its envelope, highlighting the possibilities of improving their design during the whole design process.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Dejan Mumovic ◽  
Mike Davies

To manage the concerns regarding the energy performance gap in buildings, a structured and longitudinal performance assessment of buildings, covering design through to operation, is necessary. Modelling can form an integral part of this process by ensuring that a good practice design stage modelling is followed by an ongoing evaluation of operational stage performance using a robust calibration protocol. In this paper, we demonstrate, via a case study of an office building, how a good practice design stage model can be fine-tuned for operational stage using a new framework that helps validate the causes for deviations of actual performance from design intents. This paper maps the modelling based process of tracking building performance from design to operation, identifying the various types of performance gaps. Further, during the operational stage, the framework provides a systematic way to separate the effect of (i) operating conditions that are driven by the building’s actual function and occupancy as compared with the design assumptions, and (ii) the effect of potential technical issues that cause underperformance. As the identification of issues is based on energy modelling, the process requires use of advanced and well-documented simulation tools. The paper concludes with providing an outline of the software platform requirements needed to generate robust design models and their calibration for operational performance assessments. Practical application The paper’s findings are a useful guide for building industry professionals to manage the performance gap with appropriate accuracy through a robust methodology in an easy to use workflow. The methodological framework to analyse building energy performance in-use links best practice design stage modelling guidance with a robust operational stage investigation. It helps designers, contractors, building managers and other stakeholders with an understanding of procedures to follow to undertake an effective measurement and verification exercise.


2010 ◽  
Vol 10 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. Diao ◽  
M. Barjenbruch ◽  
U. Bracklow

This paper aims to explore the impacts of peaking factors on a water distribution system designed for a small city in Germany through model-based analysis. As a case study, the water distribution network was modelled by EPANET and then two specific studies were carried out. The first study tested corresponding system-wide influences on water age and energy consumption if the peaking factors used at design stage are inconsistent with ones in real situation. The second study inspected the possible relationship between the choice of peaking factors and budgets by comparing several different pipe configurations of the distribution system, obtained according to variety of peaking factors. Given the analysis results, the first study reveals that average water age will increase if peaking factors estimated at design stage are larger than real values in that specific system, and vice versa. In contrast, energy consumption will increase if peaking factors defined for system design are smaller than ones in real case, and vice versa. According to the second study, it might be possible to amplify peaking factors for design dramatically by a slight increase in the investment on this system. However, further study on budget estimation with more factors and detailed information considered should be carried out.


2021 ◽  
Author(s):  
L. Giovannini ◽  
V.R.M. Lo Verso ◽  
F. Favoino ◽  
V. Serra ◽  
A. Pellegrino

The new HIEQ Lab (Health, well-being and Indoor Environmental Quality Laboratory) is presented. It is a living lab, primarily intended for research on human performance, comfort, and well-being, integrated with the energy performance in a completely controlled real space. Users are involved as active players in controlling and assessing building components and design strategies for health, well-being and IEQ requirements. Experimental activities will be addressed through a multi-domain approach that combines lighting, acoustic, air quality and thermal issues. For what concerns lighting, the laboratory is conceived to study the performance of daylighting and electric lighting systems and control solutions, focusing on the relationship between lighting conditions and human performance, comfort, and well-being. The paper reports the results of a literature review on existing lighting research facilities, and then describes the features of the new HIEQ Lab and its main research objectives, with a focus on lighting and daylighting research opportunities.


Sign in / Sign up

Export Citation Format

Share Document