scholarly journals Impact of Window to Wall Ratio on Energy Loads in Hot Regions: A Study of Building Energy Performance

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.

Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1499-1509
Author(s):  
Miomir Vasov ◽  
Jelena Stevanovic ◽  
Veliborka Bogdanovic ◽  
Marko Ignjatovic ◽  
Dusan Randjelovic

Buildings are one of the biggest energy consumers in urban environments, so its efficient use represents a constant challenge. In public objects and households, a large part of the energy is used for heating and cooling. The orientation of the object, as well as the overall heat transfer coefficient (U-value) of transparent and non-transparent parts of the envelope, can have a significant impact on building energy needs. In this paper, analysis of the influence of different orientations, U-values of envelope elements, and size of windows on annual heating and cooling energy for an office building in city of Nis, Serbia, is presented. Model of the building was made in the Google SketchUp software, while the results of energy performance were obtained using EnergyPlus and jEplus, taking into ac-count the parameters of thermal comfort and climatic data for the area of city of Nis. Obtained results showed that, for varied parameters, the maximum difference in annual heating energy is 15129.4 kWh, i. e per m2 27.75 kWh/m2, while the maximum difference in annual cooling energy is 14356.1 kWh, i. e per m2 26.33 kWh/m2. Considering that differences in energy consumption are significant, analysis of these parameters in the early stage of design process can affect on increase of building energy efficiency.


Author(s):  
Jovita Starynina ◽  
Leonas Ustinovičius ◽  
Mantas Vaišnoras

This research represents sustainable building modernization model, which creates knowledge-based decision-making method for old public buildings refurbishment seeking to reach the best energy performance during the design stage. Despite the fast development and spreading standards, challenging research opportunities arise from process automation and BIM adaptation for existing buildings’ requirements. To aid decision-making, building simulation is widely used in the late design stages, but its application is still limited in the early stages in which design decisions have a major impact on final building performance. Building design is a multi-collaborator discipline, where architects influence design decisions, engineers, contractors, and building owners. Using digital systems and simulations this modernization method performs already expected building energy consumption in a quickest and economic way. This model is BIM-based where design and refurbishment are based on pre-built indicators, which allows assessing the building energy demand and eco-building parameters.


2015 ◽  
Vol 10 (3) ◽  
pp. 161-176 ◽  
Author(s):  
Ajla Aksamija

Developments in information technology are providing methods to improve current design practices, where uncertainties about various design elements can be simulated and studied from the design inception. Energy and thermal simulations, improved design representations and enhanced collaboration using digital media are increasingly being used. With the expanding interest in energy-efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design strategies save energy and improve building performance. The purpose of this research was to investigate the potential of these programs to perform whole building energy analysis during the early stages of architectural design, and compare the results with the actual building energy performance. The research was conducted by simulating energy usage of a fully functional research laboratory building using two different simulation tools that are aimed for early schematic design. The results were compared with utility data of the building to identify the degree of closeness with which simulation results match the actual energy usage of the building. Results indicate that modeled energy data from one of the software programs was significantly higher than the measured, actual energy usage data, while the results from the second application were comparable, but did not correctly predict monthly energy loads for the building. This suggests that significant deviations may exist between modeled and actual energy consumption for buildings, and more importantly between different simulation software programs. Understanding the limitations and suitability of specific simulation programs is crucial for successful integration of performance simulations with the design process.


2016 ◽  
Vol 22 (6) ◽  
pp. 844-851 ◽  
Author(s):  
Darius MIGILINSKAS ◽  
Evaldas BALIONIS ◽  
Rasa DZIUGAITE-TUMENIENE ◽  
Giedrius SIUPSINSKAS

Different optimization methods generate a large variety of solutions that are suitable for achieving the sets of chosen objectives. The selection of appropriate design variables and objective functions are essential elements in the optimization process. However, the existing methodologies seem to be too complicated and designers seek to use simpli-fied methods in order to evaluate the overall performance of the buildings. The advancement of information technology enables the use of Building Information Modelling and energy simulation tools for the integrated building design in an early stage. Thus, this article introduces a new evaluation method for analysis of the effective solution of the building performance and aims at determining the influence of a complex criteria (construction duration, construction cost, annual bill-based costs, annual primary energy demand, annual CO2 emissions of energy use, CO2 emissions of construction materials and works, thermal comfort) for the final decision making. The findings of the article have confirmed that the high level of the building energy efficiency is not directly proportional to the overall investments, i.e. additional invest-ments do not bring benefits from economic and environmental points of view.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Author(s):  
Zhiqiang Zhai

Natural ventilation is one of the primary strategies for buildings in hot and mild climatic regions to reduce building cooling energy requirement. This paper uses a building energy simulation program and a computational fluid dynamics program to investigate the influence of building scales on building cooling energy consumption with and without natural ventilation. The study examines the energy performance of buildings with different L/W and H/W ratios in both Miami, FL and Los Angeles, CA. The simulation results show the varying trends of natural ventilation potential with increased building scale ratio of L/W and H/W. The comparison of the predicted energy consumptions for twenty buildings discloses the most energy-efficient building scales for rectangular-shape buildings in both hot and mild climates with and without natural ventilation. The study indicates that natural ventilation is more effective in mild climates than in hot climates, which may save cooling energy by 50% and vent fan energy by 70%. The paper analyzes the most suitable seasons for natural ventilation in Miami and Los Angeles. Further simulations indicate that extra cooling benefits associated with more natural ventilation cannot compensate additional heat gains through larger windows.


2019 ◽  
Vol 111 ◽  
pp. 06073 ◽  
Author(s):  
Ioan Silviu Dobosi ◽  
Cristina Tanasa ◽  
Nicoleta-Elena Kaba ◽  
Adrian Retezan ◽  
Dragos Mihaila

The building sector has been identified as having the greatest energy reduction potential and therefore represents a key factor for the European Union climate change combat objectives of achieving an 80-95% greenhouse gas emissions reduction by 2050. Hospitals buildings represent 7% of the nonresidential building stock in the European Union and are responsible for approximately 10% of the total energy consumption in this sector. The design and construction of hospital buildings is a complex and challenging activity for all the involved specialists, especially when energy performance is one of the objectives. This paper discusses the energy performance simulation on an hourly basis of a new hospital building that was constructed in the city of Mioveni, Romania. At this stage of the study, the building energy model solely investigates the performance of the building envelope, without modelling the HVAC system. The complexity of the building model derives from the multitude of thermal zones depending on interior temperature and ventilation air changes conditions. Several simulations are performed investigating the heating and cooling energy need depending on the building location.


Sign in / Sign up

Export Citation Format

Share Document