scholarly journals Boosting efficiency in light-driven water splitting by dynamic irradiation through synchronizing reaction and transport processes

Author(s):  
Maximilian Sender ◽  
Fabian Huber ◽  
Maximilian Moersch ◽  
Daniel Kowalczyk ◽  
Julian Hniopek ◽  
...  

This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract catalyst deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogenous three component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR and UV-vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.

2021 ◽  
Author(s):  
Maximilian Sender ◽  
Fabian Huber ◽  
Maximilian Moersch ◽  
Daniel Kowalczyk ◽  
Julian Hniopek ◽  
...  

This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract catalyst deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogenous three component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR and UV-vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mayank Garg ◽  
Jia En Aw ◽  
Xiang Zhang ◽  
Polette J. Centellas ◽  
Leon M. Dean ◽  
...  

AbstractBioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions. The exothermic frontal polymerization (FP) of a liquid or gelled resin facilitates coordinated depolymerization of an embedded sacrificial template to create host structures with high-fidelity interconnected microchannels. The chemical energy released during matrix polymerization eliminates the need for a sustained external heat source and greatly reduces external energy consumption for processing. Programming the rate of depolymerization of the sacrificial thermoplastic to match the kinetics of FP has the potential to significantly expedite the fabrication of vascular structures with extended lifetimes, microreactors, and imaging phantoms for understanding capillary flow in biological systems.


Inorganics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Laurent Sévery ◽  
Sebastian Siol ◽  
S. Tilley

Anchored molecular catalysts provide a good step towards bridging the gap between homogeneous and heterogeneous catalysis. However, applications in an aqueous environment pose a serious challenge to anchoring groups in terms of stability. Ultrathin overlayers embedding these catalysts on the surface using atomic layer deposition (ALD) are an elegant solution to tackle the anchoring group instability. The propensity of ALD precursors to react with water leads to the question whether molecules containing aqua ligands, such as most water oxidation complexes, can be protected without side reactions and deactivation during the deposition process. We synthesized two iridium and two ruthenium-based water oxidation catalysts, which contained an aqua ligand (Ir–OH2 and Ru–OH2) or a chloride (Ir–Cl and Ru–Cl) that served as a protecting group for the former. Using a ligand exchange reaction on the anchored and partially embedded Ru–Cl, the optimal overlayer thickness was determined to be 1.6 nm. An electrochemical test of the protected catalysts on meso-ITO showed different behaviors for the Ru and the Ir catalysts. The former showed no onset difference between protected and non-protected versions, but limited stability. Ir–Cl displayed excellent stability, whilst the unprotected catalyst Ir–OH2 showed a later initial onset. Self-regeneration of the catalytic activity of Ir–OH2 under operating conditions was observed. We propose chloride ligands as generally applicable protecting groups for catalysts that are to be stabilized on surfaces using ALD.


Author(s):  
Georg F. Dietze ◽  
Reinhold Kneer

Due to the selective use of liquid films in specialized technical equipment (e.g. new generation nuclear reactors), a fundamental understanding of underlying momentum and heat transport processes inside these thin liquid layers (with a thickness of approximately 0.5 mm) is required. In particular, the influence of surface waves (which develop due to the film’s natural instability) on these transport processes is of interest. For a number of years, experimental and numerical observations in wavy falling liquid films have suggested that momentum and heat transfer in the capillary wave region, preceding large wave humps, undergo drastic modulations. Indeed, some results have indicated that upward flow, i.e. counter to the gravitational acceleration, takes place in this region. Further, evidence of a substantial increase in wall-side and interfacial transfer coefficients has also been noted. Recently, Dietze et al. [1,2] have established that flow separation takes place in the capillary wave region of 2-dimensional laminar falling liquid films, partially explaining the above mentioned observations. Thereby, it was shown that the strong third order deformation (i.e. change in curvature) of the liquid-gas interface in the capillary wave region causes an adverse pressure gradient sufficiently large to induce flow detachment from the wall. In the present paper, a detailed experimental and numerical account of the capillary flow separation’s kinematics and governing dynamics as well as its effect on heat transfer for two different 2-dimensional flow conditions is presented. Experimentally, velocity measurements (using Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV)) and film thickness measurements (using a Confocal Chromatic Imaging technique) were performed in a specifically designed optical test setup. On the numerical side, simulations of the full Navier-Stokes equations as well as the energy equation using the Volume of Fluid (VOF) method were performed. In addition to the 2-dimensional investigations, the characteristics of capillary flow separation under 3-dimensional wave dynamics were studied based on the 3-dimensional numerical simulation of a water film, which was previously investigated experimentally by Park and Nosoko [3]. Results show that flow separation persists over a wide area of the 3-dimensional capillary wave region, with multiple capillary separation eddies occurring in the shape of vortex tubes. In addition, strong spanwise flow induced by the same governing mechanism is shown to occur in this region, which could explain the drastic intensification of transfer to 3-dimensional liquid films.


1993 ◽  
Vol 17 (2) ◽  
pp. 137-155 ◽  
Author(s):  
Cheryl McKenna Neuman

Aeolian environments in Canada experience seasonally cold temperatures. The portion of the annual wind transport occurring between late autumn and early spring usually is perceived as trivial because low temperature transport is difficult to measure reliably, particularly in remote northern areas, and because warm climate based semi-empirical wind erosion models are intractable for temperatures below 0°C. Very little is known about the processes contributing to the phenomenal aeolian transport associated with the Pleistocene Epoch, but supply limiting factors were likely as important then as they are in contemporary high latitude environments, although the wind and solar radiation regimes of this glacial period are not exactly replicated. Field and simulation work on the boundary layer and surface controls, which include wind shear velocity, air density, sediment texture, pore water, snow, ice, and vegetation, suggests a complex system of interactions. Frozen and wet surfaces, traditionally viewed as stable, become very active under certain circumstances.


Author(s):  
Junqi Lin ◽  
Xin Chen ◽  
Nini Wang ◽  
Shanshan Liu ◽  
Yanmei Chen ◽  
...  

Transition metal clusters have been used for water oxidation with high catalytic efficiency. However, they are water soluble and often used homogeneously rather than heterogeneously. Herein, a water soluble octanuclear...


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 602 ◽  
Author(s):  
Dmytro Nesterov ◽  
Oksana Nesterova

Photochemical water oxidation, as a half-reaction of water splitting, represents a great challenge towards the construction of artificial photosynthetic systems. Complexes of first-row transition metals have attracted great attention in the last decade due to their pronounced catalytic efficiency in water oxidation, comparable to that exhibited by classical platinum-group metal complexes. Cobalt, being an abundant and relatively cheap metal, has rich coordination chemistry allowing construction of a wide range of polynuclear architectures for the catalytic purposes. This review covers recent advances in application of cobalt complexes as (pre)catalysts for water oxidation in the model catalytic system comprising [Ru(bpy)3]2+ as a photosensitizer and S2O82− as a sacrificial electron acceptor. The catalytic parameters are summarized and discussed in view of the structures of the catalysts. Special attention is paid to the degradation of molecular catalysts under catalytic conditions and the experimental methods and techniques used to control their degradation as well as the leaching of cobalt ions.


Sign in / Sign up

Export Citation Format

Share Document