scholarly journals Matter Dynamics in a Unitary Relativistic Quantum Theory

2019 ◽  
pp. 27-39
Author(s):  
Eliade Stefanescu

We describe the matter dynamics as a positively defined density and show that, according to the general theory of relativity, such a distribution can be conceive only as of a fragment of matter with a finite mass equal to a mass , as a characteristic of the matter dynamics, – the matter quantization. The group velocities of the Fourier conjugate representations in the coordinate and momentum spaces describe the dynamics of a quantum particle in agreement with the Hamiltonian equations. Under the action of an external (non-gravitational) field, the acceleration of the quantum matter has two components: 1) A component perpendicular to the velocity, given by the relativistic mechanical component of the time dependent phase, and 2) A component given by the additional field terms of this phase. A free quantum particle is described by a non-dispersing wave function , contrary to the solution of the Schrödinger equation. A coherent electromagnetic field, in resonance with a system of active quantum particles in a Fabry-Perot cavity, has a wave vector approximately proportional to the metric elements, as the resonance frequency is approximately constant – a gravitational wave can be detected by the transmission characteristics of an active Fabry-Perot cavity. In a constant gravitational field, a quantum particle undertakes a velocity and an acceleration, which, at the boundary of a black hole are null – absorption and evaporation processes at the boundary of a black hole arise only by gravitational perturbations. Generally, a quantum particle is described by a time-space volume, called graviton, with a spin 2, and a distribution of a specific matter in this volume, with a half-integer spin for Fermions and an integer spin for Bosons. A graviton Lagrangian is obtained as a curvature integral on a graviton volume, and a Hamiltonian tensor is obtained for the gravitational coordinates and velocities.

Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research, we simulated the angular momentum of gravitational field of a rotating black hole and the spin momentum of gravitational waves emitted from the black hole. At first, we calculated energy densities of the rotating gravitational field and spinning gravitational waves as the vectors, which were projected on the spherical curved surface of the gravitational field and of the gravitational waves. Then we calculated the angular momentum and the spin momentum as the vectors perpendicular to the curved surface. The earlier research by Paul Dirac, published in 1964, did not select the curved surface to calculate the motion of quantum particles; but, instead, he chose the flat surface to develop the theory of quantum mechanics. However, we pursued the simulation of the gravitational waves in spherical polar coordinates that form the spherical curved surface of the gravitational waves. As a result, we found that a set of anti-symmetric vectors described the vectors that were perpendicular to the spherical curved surface, and with these vectors we simulated the angular momentum of the rotating black hole’s gravitational field and the spin momentum of gravitational waves. The obtained results describe the characteristics of the rotation of a black hole and of spinning gravitational waves.


2012 ◽  
Vol 18 (3) ◽  
pp. 175-184
Author(s):  
Vo Van On

In this paper, based on the vector model for gravitational field we deduce an equation to determinate the metric of space-time. This equation is similar to equation of Einstein. The metric of space-time outside a static spherically symmetric body is also determined. It gives a small supplementation to the Schwarzschild metric in General theory of relativity but the singularity does not exist. Especially, this model predicts the existence of a new universal body after a black hole.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the Schwarzschild black hole. It demonstrates how, by a judicious change of coordinates, it is possible to eliminate the singularity of the Schwarzschild metric and reveal a spacetime that is much larger, like that of a black hole. At the end of its thermonuclear evolution, a star collapses and, if it is sufficiently massive, does not become stabilized in a new equilibrium configuration. The Schwarzschild geometry must therefore represent the gravitational field of such an object up to r = 0. This being said, the Schwarzschild metric in its original form is singular, not only at r = 0 where the curvature diverges, but also at r = 2m, a surface which is crossed by geodesics.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Antonio Accioly ◽  
Wallace Herdy

The equivalence principle (EP) and Schiff’s conjecture are discussed en passant, and the connection between the EP and quantum mechanics is then briefly analyzed. Two semiclassical violations of the classical equivalence principle (CEP) but not of the weak one (WEP), i.e., Greenberger gravitational Bohr atom and the tree-level scattering of different quantum particles by an external weak higher-order gravitational field, are thoroughly investigated afterwards. Next, two quantum examples of systems that agree with the WEP but not with the CEP, namely, COW experiment and free fall in a constant gravitational field of a massive object described by its wave-function Ψ, are discussed in detail. Keeping in mind that, among the four examples focused on in this work only COW experiment is based on an experimental test, some important details related to it are presented as well.


2005 ◽  
Vol 35 (4b) ◽  
pp. 1110-1112 ◽  
Author(s):  
Geusa de A. Marques ◽  
Sandro G. Fernandes ◽  
V. B. Bezerra

1978 ◽  
Vol 23 (11) ◽  
pp. 409-412 ◽  
Author(s):  
V. De Sabbata ◽  
K. Tahik Shah

Sign in / Sign up

Export Citation Format

Share Document