scholarly journals Simulating angular momentum of gravitational field of a rotating black hole and spin momentum of gravitational waves

Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research, we simulated the angular momentum of gravitational field of a rotating black hole and the spin momentum of gravitational waves emitted from the black hole. At first, we calculated energy densities of the rotating gravitational field and spinning gravitational waves as the vectors, which were projected on the spherical curved surface of the gravitational field and of the gravitational waves. Then we calculated the angular momentum and the spin momentum as the vectors perpendicular to the curved surface. The earlier research by Paul Dirac, published in 1964, did not select the curved surface to calculate the motion of quantum particles; but, instead, he chose the flat surface to develop the theory of quantum mechanics. However, we pursued the simulation of the gravitational waves in spherical polar coordinates that form the spherical curved surface of the gravitational waves. As a result, we found that a set of anti-symmetric vectors described the vectors that were perpendicular to the spherical curved surface, and with these vectors we simulated the angular momentum of the rotating black hole’s gravitational field and the spin momentum of gravitational waves. The obtained results describe the characteristics of the rotation of a black hole and of spinning gravitational waves.

Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research we simulated how time can be reversed with a rotating strong gravity. At first, we assumed that the time and the space can be distorted with the presence of a strong gravity, and then we calculated the angular momentum density of the rotating gravitational field. For this simulation we used Einstein’s field equation with spherical polar coordinates and the Euler’s transformation matrix to simulate the rotation. We also assumed that the stress-energy tensor that is placed at the end of the strong gravitational field reflects the intensities of the angular momentum, which is the normal (perpendicular) vector to the rotating axis. The result of the simulation shows that the angular momentum of the rotating strong gravity changes its directions from plus (the future) to minus (the past) and from minus (the past) to plus (the future), depending on the frequency of the rotation.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


2011 ◽  
Vol 89 (6) ◽  
pp. 689-695 ◽  
Author(s):  
Sumanta Chakraborty ◽  
Subenoy Chakraborty

The trajectory of a test particle or a photon around a general spherical black hole is studied, and bending of the light trajectory is investigated. A pseudo-Newtonian gravitational potential describing the gravitational field of the black hole is determined and is compared with the related effective potential for test particle motion. As an example, results are presented for a Reissner–Nordström black hole.


2021 ◽  
Vol 0 (1) ◽  
pp. 87-91
Author(s):  
R.M. YUSUPOVA ◽  
◽  
R.N. ZMAILOV ◽  

The Taub-NUT space-time metric is one of the vacuum solutions to Einstein's gravitational field equations. In this metric, the Newman-Unti-Tamburino parameter (NUT) and its effect on the physical properties of a thin accretion disk are of particular interest. In this paper, calculations are performed to determine the physical properties of a thin accretion disk around the Taub-NUT black hole based on the Page-Thorne model. The influence of the NUT parameter on the angular velocity, binding energy, angular momentum of particles, effective potential, energy flow, and temperature of the accretion disk is revealed. According to the data obtained, the temperature of the accretion disk of the Taub-NUT black hole decreases as the value of the NUT parameter increases.


2002 ◽  
Vol 34 (5) ◽  
pp. 619-632 ◽  
Author(s):  
Ding-Xiong Wang ◽  
Kan Xiao ◽  
Wei-Hua Lei

Sign in / Sign up

Export Citation Format

Share Document