scholarly journals MODIFIED EPOXY MATRIX FOR VEHICLE PROTECTION: ADHESIVE AND PHYSICAL-MECHANICAL PROPERTIES

2020 ◽  
Vol 1 (22) ◽  
pp. 163-174
Author(s):  
А. V. Buketov ◽  
Т. V. Chernyavska ◽  
T. I. Ivchenko ◽  
K. M. Klevtsov ◽  
I. P. Fesenko ◽  
...  

The significance of application of the polymer composite materials in current technologies has been proven, since they have been demonstrating high performance parameters, offering improved adhesion failure resistance, enhanced mechanical and thermophysical properties which as a consequence enables their application under both ambient and elevated temperatures. The purpose of the current work is to investigate the influence of the phthalimide modifier on the adhesive and physico-mechanical properties of epoxy composite materials and protective coatings based on them. The ED-20 epoxy diane oligomer has been taken as the main component for the binder in the formation of epoxy materials. Polyethylene polyamine hardener has been used for the crosslinking of epoxy compositions. Phthalimide has been taken as a modifier. The molecular formula of the modifier is: C8H5NO2. The molar mass of phthalimide is 147.13 g/mol. It has been proven that with the introduction of the phthalimide modifier in the amount of 2.0 pts.wt. into 100 pts.wt. of ED-20 epoxy oligomer, the material which offers the following properties is being built up: adhesive failure resistance at breaking off - 47.7 MPa, residual stresses - 1.1 MPa. Compared to the parent epoxy matrix, these properties demonstrate an improvement of the adhesive failure resistance at breaking off by 1.9 times, and in addition to the above, the residual stresses are being reduced by 1.3 times. The composite obtained may be reasonably taken in the form of a matrix when building up an adhesive layer for protective coatings. It has been experimentally proven that in order to build up the materials which would offer improved cohesive properties, it is necessary to use a composition of the following makeup: ED-20 epoxy oligomer (100 pts.wt.), polyethylene polyamine hardener (10 pts.wt.), phthalimide modifier (0.25 pts.wt.). Compared to the parent epoxy matrix, the formation of that kind of a material provides an improvement of the following indicators of physical and mechanical properties of composites: bending critical stresses - from 48.0 MPa to 62.1 MPa; impact value - from 7.4 kJ/m2 to 14.7 kJ/m2. Note that the elasticity coefficient of this material is being reduced compared to the parent epoxy matrix from 2.8 GPa to 2.2 GPa. The composite obtained may be reasonably taken in the form of a matrix when building up the surface layer for protective coatings.

2020 ◽  
Vol 10 (5) ◽  
pp. 6214-6219
Author(s):  
A. Buketov ◽  
O. Syzonenko ◽  
D. Kruglyj ◽  
T. Cherniavska ◽  
E. Appazov ◽  
...  

Epoxy-diane oligomer ED-20, hardener polyethylene polyamine, and micro dispersed particles of iron-carbide mixture synthesized by high-voltage electric discharge have been used for the formation of Composite Materials (CMs) and protective coatings for the transport industry. The dependence of the adhesive, physical, and mechanical properties and residual stresses of epoxy composites on the content of micro dispersed powders has been studied in this paper. It has been proved that for the formation of a composite material or protective coating with improved adhesion and cohesion properties, the optimal content of particles is 0.5 wt.% per 100 wt.% of epoxy oligomer ED-20. Such materials are characterized by increased mechanical strength and the ability to resist static and shock loads, as their properties are significantly increased. The obtained results of the experimental studies of the physical and mechanical properties of composite materials correlate with the studied results of adhesive characteristics, which indicate their veracity.


Author(s):  
Oleh Bezbakh

The efficient use of some innovative technologies in adhesives with advanced operational characteristics development aimed at anti-corrosion properties increase of transport means has been substantiated in the paper under discussion. The above-mentioned technologies involving the use of some interaction-active ingredients forming the cross-linkable coatings composition, including some polymers, have provided their cohesion properties essential improvement. Epoxy diane oligomer ED-16 has been chosen as the main component for the matrix in the composite formation. The aliphatic resin DЕG-1 (GOST 10136-77) as a plasticizer has been added to the epoxy oligomer. The compound has been formed of the following concentration: epoxy resin ED-16: plasticizer DЕG -1 – 100: 40. The hardener of cold hardening polyethelenepolyamine PEPA (ТУ 6-05-241-202-78) has been used at the epoxy resin-based developed materials polymerization. Phthalic acid anhydride has been used as a modifier to improve the properties of epoxy composite materials. The modifier was added to the matrix in the following ratio: from 0,10 to 2,00 pts.wt. per 100 pts.wt. of epoxy oligomer ЕD-20. The molecular formula of the modifier is as follows: C8H4O3. Molar mass is 148,1 g/mol. Density is ρ = 1,52 г/см³. To form a composite material or a protective coating with some improved adhesive properties and inconsiderable residual stresses the phthalic acid anhydride as a modifier was found to be added to the epoxy matrix with the content q = 1,25 pts.wt. per 100 pts.wt. of the epoxy matrix (oligomer ЕD-20 + plasticizer DЕG -1). In this case, the adhesive strength of the coating is being increased from sа = 28,3 MPа to sа = 46,4 MPа, and residual stresses – from sз = 1,9 MPа to sз = 2,1 MPа. First of all, the improved properties of the modified materials were caused by the interaction of active carbonyl (С=О) groups of the modifier with nitrogen-containing (NH-) groups of the hardener. It has provided the increase of the composite cross-linking degree resulted in their both adhesive and cohesion properties improvement. Moreover, it was found that the modifier use in the compound with the content q = 1,0…1,5 00 pts.wt. per 100 00 pts.wt. of the matrix has provided the increase of the river water influenced coatings resistance from ρ = 12,1 Оm·cm2 до ρ = 21,2…22,4 Оm·cm2. Though, some further increase of the additive content in the coating has caused the deterioration of anti-corrosion characteristics of the materials. Thus, the conducted study has contributed to the determination of the most efficient content ratio of phthalic acid anhydride as a modifier to for the coatings of functional use.


2019 ◽  
Vol 6 (2) ◽  
pp. 64-70
Author(s):  
А.V. Buketov ◽  
O.М. Syzonenko ◽  
О.М. Bezbakh ◽  
A.S. Torpakov ◽  
Ye.V. Lypian

For the formation of composite materials and protective coatings for the transport industry, ED-20 epoxy yanoic oligomer, the polyethylene polyamine PEPA and microfine fractions of high-voltage synthesized powder charge were used. The dependence of the content of microdispersed powder on the adhesive, physical and mechanical properties, and residual stresses of epoxy composites has been investigated. It has been proved that for the formation of a composite material or protective coating with improved adhesive and cohesive properties, the optimal particle content is 0.05–0.50 parts by weight per 100 parts by weight of the ED-20 epoxy oligomer. Such materials are characterized by increased mechanical strength and the ability to resist static and dynamic loads, since their properties are significantly increased compared with the matrix. The obtained results of experimental studies of physical and mechanical properties of composite materials are consistent with the test results of samples with adhesive characteristics, indicating their reliability.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


2021 ◽  
Vol 3 (144) ◽  
pp. 100-107
Author(s):  
Aleksandr M. Mikhal’chenkov ◽  
◽  
Anna A. Tyureva ◽  
Ivan A. Borshchevskiy ◽  
Larisa S. Kiseleva

The widespread use of polymer-based composite materials made it possible to replace expensive metal alloys, increase the strength indicators of structures and improve tribotechnical properties. Their use as protective coatings for structural elements operating in an abrasive environment has yielded good results in increasing wear resistance, which is especially important for parts of tillage tools. (Research purpose) The research purpose is in studying the influence of the composition and size of the fractions of the composite gravel filler with an epoxy matrix on its wear. (Materials and мethods) The article considers five composite materials with different compositions. The prototypes were hollow cylinders with dimensions that provide the contact area necessary for the passage of all processes of abrasive wear. The abrasive composition consisted of a mixture of sand and gravel with a fraction size of about 30-40 millimeters. (Results and discussion) The changes in the wear over time are directly proportional and this confirms the classical views on the wear process. The experiments was conducted on the installation of authors’ design. (Conclusions) The wear over time for experimental composites is the same and is expressed in a straight- line relationship; the maximum wear resistance is a composite in which gravel particles have a size of 2.25 millimeters with its content in the matrix of about 60 mass parts. At the same time, gravel with an effective diameter of 2.25 millimeters creates optimal conditions for self-organization of the wear process and provides a relatively low value of the friction coefficient.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Raphael Olabanji Ogunleye ◽  
Sona Rusnakova

This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.


Author(s):  
Danyl Zhytnyk

The use of a new method of operational life increase of the transport means parts due to the introduction of polymer-based modified materials has been substantiated in the paper under discussion. It is shown that the use of matrices based on epoxy diane oligomers is quite promising direction in protective coatings formation. Some active additives have been applied to improve the properties of epoxy matrices on preliminary stage of their formation. The use of maleinic anhydride modifier containing active to the interphase interaction functional groups is promising as well. Epoxy diane oligomer has been used as the main component for the matrix in the composite formation. The hardener polyethelenepolyamine has been used to link the epoxy compositions enabling to harden the materials at room temperature. The choice of maleinic anhydride as a modifier to improve thermal-physical properties of the developed materials has been substantiated. It has been found that to form a composite material or a protective coating with improved thermal-physical properties it is necessary to apply maleinic anhydride as a modifier in epoxy matrix in the following ratio: q = 0,5 pts.wt. per q = 100 pts.wt. of epoxy oligomer ЕД-20. In this case the material has been formed where, comparing with nonmodified matrix, the indices of glass transition temperature are being increased from Тс = 327 К tо Тс = 335 К, heat resistance (by Martenson) from Т = 341 К to Т = 362 К, and thermal coefficient of linear expansion in the range of temperatures ∆Т = 303…423 К is being decreased from α = 9,9 ×10-5 К-1 to α = 4,4 ×10-5 К-1. It has been proved that the maleinic anhydride content in the matrix with its small fraction (q = 0,5 pts.wt.) has activated the processes of interphase interaction in epoxy CM structure formation, resulted in the increase of number of both physical and chemical bonds per polymer volume unit. This process will involve the increase of gel fraction degree in CM, and, correspondingly, both the cohesion and thermal-physical properties of modified CM have been improved. The developed material under discussion could be efficiently used as a matrix in formation of protective coatings which are to be operated under high temperatures conditions and dynamic or static loadings.


Sign in / Sign up

Export Citation Format

Share Document