illumina miseq platform
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2169
Author(s):  
Antoine Dara ◽  
Bourema Kouriba ◽  
Amadou Daou ◽  
Abdoul Karim Sangare ◽  
Djibril Kassogue ◽  
...  

Next-generation sequencing (NGS) has become a necessary tool for genomic epidemiology. Even though the utility of genomics in human health has been proved, genomic surveillance has never been as important as during the COVID-19 pandemic. This has been demonstrated by the recent use of genomic surveillance to detect new variants of SARS-CoV-2 in the United Kingdom, South Africa, and Brazil. Until recently, Malian scientists did not have access to any local NGS platform, and samples had to be shipped abroad for sequencing. Here, we report on how we adapted a laboratory setup for Plasmodium research to generate the first complete SARS-CoV-2 genome locally. Total RNA underwent a library preparation using an Illumina TruSeq stranded RNA kit. A metagenomics sequencing was performed on an Illumina MiSeq platform, which was followed by bioinformatic analyses on a local server in Mali. We recovered a full genome of SARS-CoV-2 of 29 kb with an average depth coverage of 200×. We have demonstrated our capacity to generate a high-quality genome with limited resources and highlight the need to develop genomics capacity locally to solve health problems. We discuss challenges related to access to reagents during a pandemic period and propose some home-made solutions.


2021 ◽  
Vol 7 (11) ◽  
pp. 978
Author(s):  
Gilmore T. Pambuka ◽  
Tonjock Rosemary Kinge ◽  
Soumya Ghosh ◽  
Errol D. Cason ◽  
Martin M. Nyaga ◽  
...  

Plant-associated fungi, or the mycobiome, inhabit plant surfaces above ground, reside in plant tissues as endophytes, or are rhizosphere in the narrow zone of soil surrounding plant roots. Studies have characterized mycobiomes of various plant species, but little is known about the sorghum mycobiome, especially in Africa, despite sorghum being one of the most important indigenous and commercial cereals in Africa. In this study, the mycobiome associated with above- and below-ground tissues of three commercial sorghum cultivars, as well as from rhizosphere and surrounding bulk soil samples, were sequenced using targeted sequencing with the Illumina MiSeq platform. Relative abundance differences between fungal communities were found between above-ground and below-ground niches, with most differences mostly in the dominant MOTUs, such as Davidiellaceae sp. (Cladosporium), Didymellaceae sp. 1 (Phoma), Fusarium, Cryptococcus and Mucor. Above-ground communities also appeared to be more diverse than below-ground communities, and plants harboured the most diversity. A considerable number of MOTUs were shared between the cultivars although, especially for NS5511, their abundances often differed. Several of the detected fungal groups include species that are plant pathogens of sorghum, such as Fusarium, and, at low levels, Alternaria and the Ustilaginomycetes. Findings from this study illustrate the usefulness of targeted sequencing of the ITS rDNA gene region (ITS2) to survey and monitor sorghum fungal communities and those from associated soils. This knowledge may provide tools for disease management and crop production and improvement.


2021 ◽  
Vol 9 (9) ◽  
pp. 1948
Author(s):  
Sinem Aydin ◽  
Ceren Ozkul ◽  
Nazlı Turan Yucel ◽  
Hulya Karaca

Antidepressants are drugs commonly used in clinical settings. However, there are very limited studies on the effects of these drugs on the gut microbiota. Herein, we evaluated the effect of reboxetine (RBX), a selective norepinephrine (noradrenaline) reuptake inhibitor (NRI), on gut microbiota in both diabetic and non-diabetic rats. This is the first report of relation between reboxetine use and the gut microbiota to our knowledge. In this study, type-1 diabetes induced by using streptozotocin (STZ) and RBX was administered to diabetic rats and healthy controls for 14 days. At the end of the treatment, stool samples were collected. Following DNA extraction, amplicon libraries for the V3-V4 region were prepared and sequenced with the Illumina Miseq platform. QIIME was used for preprocessing and analysis of the data. As a result, RBX had a significant effect on gut microbiota structure and composition in diabetic and healthy rats. For example, RBX exposure had a pronounced microbial signature in both groups, with a low Firmicutes/Bacteroidetes ratio and low Lactobacillus levels. While another abundance phylum after exposure to RBX was Proteabacteria, other notable taxa in the diabetic group included Flavobacterium, Desulfovibrionaceae, Helicobacteriaceae, Campylobacterales, and Pasteurellacae when compared to the untreated group.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 612
Author(s):  
Fan Zhang ◽  
Zhiwei Chen ◽  
Lin Jiang ◽  
Zihan Chen ◽  
Hua Sun

Fumonisins are a kind of mycotoxin that has harmful influence on the health of humans and animals. Although some research studies associated with fumonisins have been reported, the regulatory limits of fumonisins are imperfect, and the effects of fumonisins on fecal bacterial flora of mice have not been suggested. In this study, in order to investigate the effects of fumonisin B1 (FB1) on fecal bacterial flora, BALB/c mice were randomly divided into seven groups, which were fed intragastrically with 0 mg/kg, 0.018 mg/kg, 0.054 mg/kg, 0.162 mg/kg, 0.486 mg/kg, 1.458 mg/kg and 4.374 mg/kg of FB1 solutions, once a day for 8 weeks. Subsequently, feces were collected for analysis of microflora. The V3-V4 16S rRNA of fecal bacterial flora was sequenced using the Illumina MiSeq platform. The results revealed that fecal bacterial flora of mice treated with FB1 presented high diversity. Additionally, the composition of fecal bacterial flora of FB1 exposure groups showed marked differences from that of the control group, especially for the genus types including Alloprevotella, Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, Parabacteroides and phylum types including Cyanobacteria. In conclusion, our data indicate that FB1 alters the diversity and composition of fecal microbiota in mice. Moreover, the minimum dose of FB1 exposure also causes changes in fecal microbiota to some extent. This study is the first to focus on the dose-related effect of FB1 exposure on fecal microbiota in rodent animals and gives references to the regulatory doses of fumonisins for better protection of human and animal health.


2021 ◽  
Author(s):  
Meganathan Ramakodi

Abstract Illumina sequencing platforms have been widely used for amplicon-based environmental microbiome research. Analyses of amplicon data of environmental samples, generated from Illumina MiSeq platform illustrate the reverse (R2) reads in the PE datasets to have low quality towards the 3’ end of the reads which affect the sequencing depth of samples and ultimately impact the sample size which may possibly lead to an altered outcome. This study evaluates the usefulness of single-end (SE) sequencing data in microbiome research when the Illumina MiSeq PE dataset shows significantly high number of low quality reverse reads. In this study, the amplicon data (V1V3, V3V4, V4V5 and V6V8) from 128 environmental (soil) samples, downloaded from SRA, demonstrate the efficiency of single-end (SE) sequencing data analyses in microbiome research. The SE datasets were found to infer the core microbiome structure as comparable to the PE dataset. Conspicuously, the forward (R1) datasets inferred a higher number of taxa as compared to PE datasets for most of the amplicon regions, except V3V4. Thus, analyses of SE sequencing data, especially R1 reads, in environmental microbiome studies could ameliorate the problems arising on sample size of the study due to low quality reverse reads in the dataset. However, care must be taken while interpreting the microbiome structure as few taxa observed in the PE datasets were absent in the SE datasets. In conclusion, this study demonstrates the availability of choices in analyzing the amplicon data without having the need to remove samples with low quality reverse reads.


2021 ◽  
Vol 8 (6) ◽  
pp. 103
Author(s):  
Takalani Whitney Maake ◽  
Olayinka Ayobami Aiyegoro ◽  
Matthew Adekunle Adeleke

The effects on rumen microbial communities of direct-fed probiotics, Lactobacillus rhamnosus and Enterococcus faecalis, singly and in combination as feed supplements to both the Boer and Speckled goats were studied using the Illumina Miseq platform targeting the V3-V4 region of the 16S rRNA microbial genes from sampled rumen fluid. Thirty-six goats of both the Boer and Speckled were divided into five experimental groups: (T1) = diet + Lactobacillus rhamnosus; (T2) = diet + Enterococcus faecalis; (T3) = diet + Lactobacillus rhamnosus + Enterococcus faecalis; (T4, positive control) = diet + antibiotic and (T5, negative control) = diet without antibiotics and without probiotics. Our results revealed that Bacteroidetes, Firmicutes, TM7, Proteobacteria, and Euryarchaeota dominate the bacterial communities. In our observations, Lactobacillus rhamnosus and Enterococcus faecalis supplements reduced the archaeal population of Methanomassiliicocca in the T1, T2 and T3 groups, and caused an increase in the T4 group. Chlamydiae were present only in the T5 group, suggesting that probiotic and antibiotic inhibit the growth of pathogens in the rumen. We inferred, based on our results, that Lactobacillus rhamnosus and Enterococcus faecalis favour the survival of beneficial microbial communities in the goats’ rumen. This may lead to an overall improved feed efficacy and growth rate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixing Cui ◽  
Qingyun Guo ◽  
Xuexiong Wang ◽  
Kevin Duffy ◽  
Xiaohua Dai

Microorganisms play an essential role in the growth and development of numerous insect species. In this study, the total DNA from the midgut of adults of Dactylispa xanthospila were isolated and bacterial 16S rRNA sequenced using the high-throughput Illumina MiSeq platform. Then, the composition and diversity of the midgut bacterial community were analysed with QIIME2. The results showed the midgut bacteria of D. xanthospila belong to 30 phyla, 64 classes, 135 orders, 207 families and 369 genera. At the phylum level, Proteobacteria, Bacteroidetes and Firmicutes were the dominant bacteria, accounting for 91.95%, 3.44% and 2.53%, respectively. The top five families are Enterobacteriaceae (69.51%), Caulobacteraceae (5.24%), Rhizobiaceae (4.61%), Sphingomonadaceae (4.23%) and Comamonadaceae (2.67%). The bacterial community's primary functions are carbohydrate metabolism, amino acid metabolism and cofactor and vitamin metabolism, which are important for the nutritional requirements of plant-feeding insects.


Author(s):  
Champika Fernando ◽  
Janet E. Hill

Abstract This protocol can be applied to determine the composition of a microbial community. The cpn60 gene (also known as groEL, hsp60) is present in almost all bacteria and a 552-558 bp region of the gene has been established as a barcode for species level identification of bacteria. The primer cocktail used in this protocol amplifies cpn60 barcode sequences from bacteria with a wide range of G+C content. Some species of Mycoplasma lack the cpn60 gene and therefore this method is not recommended to detect Mycoplasma. DNA sequences generated from this method could be compared to cpnDB, a public database of cpn60 sequences, for identification. Library preparation involves cpn60 amplicon generation, PCR clean-up, index PCR, index PCR clean-up, library quantification, normalization, pooling, library denaturation and loading. Time taken to complete depends on the number of samples included. If using 96 samples, the procedure takes 8 hours but there are several stages where the samples could be stored and continued the next day. Specific instructions are provided for the Illumina MiSeq platform, but the protocol could easily be adapted for other sequencing platforms.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10862
Author(s):  
Panyapon Pumkaeo ◽  
Junko Takahashi ◽  
Hitoshi Iwahashi

Studies on bioaerosols have primarily focused on their chemical and biological compositions and their impact on public health and the ecosystem. However, most bioaerosol studies have only focused on viruses, bacteria, fungi, and pollen. To assess the diversity and composition of airborne insect material in particulate matter (PM) for the first time, we attempted to detect DNA traces of insect origin in dust samples collected over a two-year period. These samples were systematically collected at one-month intervals and categorized into two groups, PM2.5 and PM10, based on the aerodynamic diameter of the aerosol particles. Cytochrome-c oxidase I (COI) was the barcoding region used to identify the origins of the extracted DNA. The airborne insect community in these samples was analyzed using the Illumina MiSeq platform. The most abundant insect sequences belonged to the order Hemiptera (true bugs), whereas order Diptera were also detected in both PM2.5 and PM10 samples. Additionally, we inferred the presence of particulates of insect origin, such as brochosomes and integument particles, using scanning electron microscopy (SEM). This provided additional confirmation of the molecular results. In this study, we demonstrated the benefits of detection and monitoring of insect information in bioaerosols for understanding the source and composition. Our results suggest that the PM2.5 and PM10 groups are rich in insect diversity. Lastly, the development of databases can improve the identification accuracy of the analytical results.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Ji-Young Lee ◽  
Gyu-Sung Cho ◽  
Charles M. A. P. Franz ◽  
Dae-Ook Kang

ABSTRACT Bacillus subtilis subsp. subtilis MD 32 was isolated from kimchi. The strain was sequenced using an Illumina MiSeq platform, and the genome size was 4,238,856 bp with a GC content of 43.41 mol%. The genome encoded 4,396 proteins, with 45 tRNAs, 6 rRNAs, and 5 noncoding RNAs.


Sign in / Sign up

Export Citation Format

Share Document