scholarly journals Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis

2013 ◽  
Vol 92 (2) ◽  
pp. 370-374 ◽  
Author(s):  
Sathishkumar Jayaraman ◽  
Gokila Thangavel ◽  
Hannah Kurian ◽  
Ravichandran Mani ◽  
Rajalekshmi Mukkalil ◽  
...  
2019 ◽  
Vol 7 (3) ◽  
pp. 71 ◽  
Author(s):  
Cristiano Bortoluzzi ◽  
Bruno Serpa Vieira ◽  
Juliano Cesar de Paula Dorigam ◽  
Anita Menconi ◽  
Adebayo Sokale ◽  
...  

The objective of this study was to evaluate the effects of the dietary supplementation of Bacillus subtilis DSM 32315 (probiotic) on the performance and intestinal microbiota of broiler chickens infected with Clostridium perfringens (CP). One-day-old broiler chickens were assigned to 3 treatments with 8 replicate pens (50 birds/pen). The treatments were: non-infected control; infected control; and infected supplemented with probiotic (1 × 106 CFU/g of feed). On day of hatch, all birds were sprayed with a coccidia vaccine based on the manufacturer recommended dosage. On d 18–20 the infected birds were inoculated with CP via feed. Necrotic enteritis (NE) lesion score was performed on d 21. Digestive tract of 2 birds/pen was collected on d 21 to analyze the ileal and cecal microbiota by 16S rRNA sequencing. Performance was evaluated on d 28 and 42. On d 21, probiotic supplementation reduced (p < 0.001) the severity of NE related lesion versus infected control birds. On d 28, feed efficiency was improved (p < 0.001) in birds supplemented with probiotic versus infected control birds. On d 42, body weight gain (BW gain) and feed conversion ratio (FCR) were improved (p < 0.001) in probiotic supplemented birds versus infected control birds. The diversity, composition and predictive function of the intestinal microbial digesta changed with the infection but the supplementation of probiotic reduced these variations. Therefore, dietary supplementation of Bacillus subtilis DSM 32315 was beneficial in attenuating the negative effects of CP challenge on the performance and intestinal microbiota of broilers chickens.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


2017 ◽  
Vol 08 (03) ◽  
Author(s):  
David Xiang Y ◽  
Zhiyong H ◽  
Wenyue W ◽  
Colin P ◽  
Zhi cheng X

2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Catherine Ausland ◽  
Adil Sabr Al-Ogaili ◽  
Juan D. Latorre ◽  
Guillermo Tellez-Isaias ◽  
Billy M. Hargis ◽  
...  

Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here the draft genome sequence of Clostridium perfringens strain TAMU, which was used in developing an NE chicken challenge model. This C. perfringens TAMU genome sequence will aid in advancing potential intervention strategies to reduce NE pathogenesis.


2007 ◽  
Vol 73 (21) ◽  
pp. 7110-7113 ◽  
Author(s):  
Weiduo Si ◽  
Joshua Gong ◽  
Yanming Han ◽  
Hai Yu ◽  
John Brennan ◽  
...  

ABSTRACT Cell proliferation and alpha-toxin gene expression of Clostridium perfringens in relation to the development of necrotic enteritis (NE) were investigated. Unlike bacitracin-treated chickens, non-bacitracin-treated birds exhibited typical NE symptoms and reduced growth performance. They also demonstrated increased C. perfringens proliferation and alpha-toxin gene expression that were positively correlated and progressed according to the regression model y = b 0 + b 1 X − b 2 X 2. The average C. perfringens count of 5 log10 CFU/g in the ileal digesta appears to be a threshold for developing NE with a lesion score of 2.


2010 ◽  
Vol 5 (1) ◽  
pp. e28-e29 ◽  
Author(s):  
Ross W. Miller ◽  
James Skinner ◽  
Alexander Sulakvelidze ◽  
Greg F. Mathis ◽  
Charles L. Hofacre

2005 ◽  
Vol 71 (8) ◽  
pp. 4185-4190 ◽  
Author(s):  
Alex Yeow-Lim Teo ◽  
Hai-Meng Tan

ABSTRACT The objectives of this study were to isolate beneficial strains of microorganisms from the gastrointestinal tracts of healthy chickens and to screen them against Clostridium perfringens, a causative agent of necrotic enteritis in poultry. One of the bacteria isolated, a strain of Bacillus subtilis, was found to possess an anticlostridial factor that could inhibit the C. perfringens ATCC 13124 used in this study. The anticlostridial factor produced by B. subtilis PB6 was found to be fully or partially inactivated in the presence of pronase, trypsin, and pepsin. In contrast, the antimicrobial activity of the anticlostridial factor was not affected by treatment at 100 or 121°C or by treatment with any of the organic solvents used in the study. The optimum growth temperature and optimum pH for production of the anticlostridial factor were 37°C and 6.20, respectively. Using the mass spectroscopy-mass spectroscopy technique, the apparent molecular mass of the anticlostridial factor was estimated to be in the range from 960 to 983 Da. In terms of the antimicrobial spectrum, the anticlostridial factor was inhibitory toward various strains of C. perfringens implicated in necrotic enteritis in poultry, Clostridium difficile, Streptococcus pneumoniae, Campylobacter jejuni, and Campylobacter coli.


Sign in / Sign up

Export Citation Format

Share Document