scholarly journals THE USE OF IN VITRO AREA UNDER DISEASE PROGRESS CURVE TO PREDICT QUANTITATIVE TRAITS IN THE FUSARIUM HEAD BLIGHT-SMALL GRAIN CEREAL PATHOSYSTEM

2021 ◽  
Vol 33 (2) ◽  
pp. 303-312
Author(s):  
Nachaat Sakr

Plant Disease ◽  
2021 ◽  
Author(s):  
Brian Mueller ◽  
Carol Groves ◽  
Damon L. Smith

Fusarium graminearum commonly causes Fusarium head blight (FHB) on wheat, barley, rice, and oats. Fusarium graminearum produces nivalenol and deoxynivalenol (DON) and forms derivatives of DON based on its acetylation sites. The fungus is profiled into chemotypes based on DON derivative chemotypes (3 acetyldeoxynivalenol (3ADON) chemotype; 15 acetyldeoxynivalenol (15ADON) chemotype) and/or the nivalenol (NIV) chemotype. The current study assessed the Fusarium population found on wheat and the chemotype profile of the isolates collected from 2016 and 2017 in Wisconsin. Fusarium graminearum was isolated from all locations sampled in both 2016 and 2017. Fusarium culmorum was isolated only from Door County in 2016. Over both growing seasons, 91% of isolates were identified as the 15ADON chemotype while 9% of isolates were identified as the 3ADON chemotype. Aggressiveness was quantified by area under disease progress curve (AUDPC). The isolates with the highest AUDPC values were from the highest wheat producing cropping districts in the state. Deoxynivalenol production in grain and sporulation and growth rate in vitro were compared to aggressiveness in the greenhouse. Our results showed that 3ADON isolates in Wisconsin were among the highest in sporulation capacity, growth rate, and DON production in grain. However, there were no significant differences in aggressiveness between the 3ADON and 15ADON isolates. The results of this research detail the baseline frequency and distribution of 3ADON and 15ADON chemotypes observed in Wisconsin. Chemotype distributions within populations of F. graminearum in Wisconsin should continue to be monitored in the future.


2019 ◽  
Vol 31 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Nachaat Sakr

Aggressiveness is the most important fungal trait affecting Fusarium head blight (FHB) disease invasion and stability of host resistance. Until recently, in vitro methodologies have proved to be very useful in analyzing disease responses in barley plants to FHB infection. To update our knowledge, the variation in aggressiveness for 16 isolates of four FHB species was assessed towards two barley cultivars varying in resistance to FHB. Nine aggressiveness criteria involved in three in vitro assays were used: incubation period, latent period (LP), lesion length (of detached leaf and clip-dipping inoculations), germination rate reduction, standardized area under disease progress curve (AUDPCstandard), coleoptile length reduction of Petri-dish inoculation, and percentage of infected seedlings (of foliar-spraying and pin-point inoculations). Differences in inoculated treatment were observed on young plant parts relative to water controls. Inter and intraspecific differences in aggressiveness were observed towards barley plants as measured by LP and AUDPCstandard. Nevertheless, the other seven criteria did not differentiate FHB isolates. Results indicted that a cultivar-specific aggressiveness do not exist among barley plants and pathogens for LP and AUDPCstandard. Significant correlation coefficients were obtained between the data of LP and AUDPCstandard. Moreover, the values of LP and AUDPCstandard were significantly correlated with the data of disease incidence generated under controlled and field conditions. It seems that LP and AUDPCstandard are indicators of aggressiveness occurring in the whole plant during FHB infection. To our best knowledge, this is the first in vitro research full analyzing aggressiveness of four FHB species on barley plants. In addition, our study investigates the potential use of in vitro indices in predicting FHB data generated under controlled and field conditions.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Wiwit Ningtias ◽  
Endang Mugiastuti ◽  
Ruth Feti Rahayuniati ◽  
Loekas Soesanto

Penelitian bertujuan untuk: 1) mengetahui konsentrasi tepung jagung yang tepat untuk medium cair Trichoderma harzianum T10, 2) mengetahui pengaruh aplikasi T. harzianum T10 dalam berbagai konsentrasi medium cair tepung jagung terhadap penekanan penyakit rebah semai dan pertumbuhan bibit mentimun. Penelitian dilaksanakan di Laboratorium Perlindungan Tanaman dan di lahan Fakultas Pertanian, Universitas Jenderal Soedirman pada bulan September 2017 sampai Januari 2018. Pengujian in vitro menggunakan Rancangan Acak Lengkap dengan  lima perlakuan dan  lima ulangan, meliputi perlakuan formula cair medium Potato Dextrose Broth (PDB), formula cair tepung jagung konsentrasi 5, 10, 15 dan 20 g/L. Pengujian in planta menggunakan Rancangan Acak Kelompok dengan 6 perlakuan dan 5 ulangan, membandingkan kontrol dengan tanaman yang diberi perlakuan T. harzianum T10 pada masing-masing formula cair konsentrasi tepung jagung. Variabel yang diamati meliputi kepadatan konidium, masa inkubasi, kejadian penyakit, area under disease progress curve (AUDPC), potensi tumbuh maksimum, daya kecambah, tinggi tanaman, panjang akar, bobot segar akar dan bobot segar tajuk. Hasil penelitian menunjukkan bahwa kepadatan konidium T. harzianum T10 tertinggi pada formula medium cair tepung jagung konsentrasi 20 g/L sebesar 3,67x106 konidium/mL, tetapi belum mampu menyamai medium PDB. Aplikasi T. harzianum T10 yang efektif menekan penyakit rebah semai adalah perlakuan T. harzianum T10 dalam formula cair tepung jagung konsentrasi 15 g/L, yaitu mampu menekan kejadian penyakit 71,43% dan menunda masa inkubasi 35,83%. Aplikasi T. harzianum T10 selain konsentrasi 15 g/L belum berpengaruh terhadap variabel yang diamati dan diukur.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hamza Bouanaka ◽  
Ines Bellil ◽  
Wahiba Harrat ◽  
Saoussene Boussaha ◽  
Abdelkader Benbelkacem ◽  
...  

Abstract Background Durum wheat (Triticum durum Desf.) is one of the most important cereals in the world. Unfortunately, the wheat plant is a target of several species of the genus Fusarium. This genus causes two serious diseases: fusarium crown rot (FCR) and fusarium head blight (FHB). The search for new indigenous strains of Trichoderma with a high potential for biocontrol against these two diseases was the purpose of this study. Results Biocontrol potential of 15 isolates of Trichoderma (T1 to T15), isolated from different rhizosphere soils and Algerian ecosystems, was evaluated against 4 strains of Fusarium culmorum (FC11, FC2, FC4, and FC20); the main causative agent of FCR and FHB. The efficacy of biological control by Trichoderma spp., evaluated by in vitro tests (direct and indirect confrontation), was confirmed by in vivo bioassays. The in vitro results showed a significant inhibition of mycelial growth of F. culmorum species than the control. The highest percentages of inhibition were obtained by T9, T12, and T14 isolates causing a maximum inhibition percentage of 81.81, 77.27, and 80.68%, respectively. T14 was selected for biocontrol in in vivo testing. A tube and pot experiments for FCR against F. culmorum showed that T14 decreased the disease severity with 50 and 63.63% reduction, respectively. FHB infection was significantly reduced by T14 in all durum wheat cultivars tested, where %AUDPC (area under the disease progress curve) reduction was 49.77, 43.43, 48.25, and 74.60% for Simeto, Waha, Bousselem, and Setifis genotypes, respectively. Yields also increased significantly for almost all cultivars. The antagonistic T14 was characterized based on molecular tools, using translation elongation factor1-alpha (TEF1-α) and internal transcribed spacers rDNA (ITS1). The results identified T14 as T. afroharzianum with accession numbers attributed by NCBI GenBank as MW171248 and MW159753. Conclusions Trichoderma afroharzianum, evaluated for the first time in Algeria as biocontrol agent, is a promising biocontrol approach against FCR and FHB.


2021 ◽  
Author(s):  
Sinegugu Precious Nothando Shude ◽  
Nokwazi Carol Mbili ◽  
Kwasi Sackey Yobo

The combination of yeast antagonists and Acibenzolar-S-Methyl (ASM) was tested against Fusarium graminearum on a spring wheat cultivar PAN3471. Two strains of Papiliotrema flavescens (Strains WL3 and WL6) and a strain of Pseudozyma sp. (MGO1) were combined with full strength ASM at anthesis, half strength ASM at anthesis and quarter strength ASM at late boot stages. The yeast and ASM treatments were applied prior to F. graminearum inoculation and disease progress was assessed over time. The combination of yeast and ASM treatments effectively reduced Fusarium Head Blight (FHB) severity and deoxynivalenol (DON) concentration compared to when the treatments were used alone. A positive correlation was observed between the Area Under Disease Progress Curve (AUDPC) and Percentage Seed Infection (PSI) (r = 0.44) whereas a negative correlation was observed between AUDPC and Hundred Seed Weight (HSW) (r = -0.77) and PSI and HSW (r = -0.44). The best combination treatment providing the highest reduction in final disease severity (41.83%), high HSW and moderate PSI was 0.075 g/l ASM at anthesis plus P. flavescens strain WL3. The highest DON reduction (19.35%) was by the treatment 0.075 g/l ASM at anthesis plus P. flavescens strain WL6. The best treatment was P. flavescens combined with 0.075 g/l ASM at anthesis. Although Pseudozyma sp. strain MGO1 did not provide the best FHB and DON reduction, its combination with ASM application improved disease control efficacy. To the best of our knowledge, this study presents the first report of the combination of P. flavescens and ASM in the management of FHB caused by F. graminearum in wheat plants.


2006 ◽  
Vol 69 (10) ◽  
pp. 2460-2464 ◽  
Author(s):  
K. M. TUBAJIKA

Growth of Physalospora vaccinii on inoculated agar growth medium and cranberries treated with 0.1, 1, 10, 100, and 1,000 ppm of alkyl dimethyl benzyl ammonium chloride (ADBAC) was investigated in the laboratory. In vitro growth assays, the colony diameter, and mycelial dry weight of P. vaccinii was reduced at 1,000 ppm ADBAC. Mild or no reduction of fungal growth and mycelial dry weight was observed at concentrations less than 100 ppm when compared with the nonamended control. Growth of P. vaccinii on inoculated cranberries was inhibited by treatment with 10 and 100 ppm ADBAC. Complete inhibition of fungus growth was also achieved at 1,000 ppm ADBAC. Area under the disease progress curve values in wounded fruits were 75, 77, and 100% at 10, 100, and 1,000 ppm ADBAC, respectively, whereas area under the disease progress curve values in fruits immersed in ADBAC and pathogen were reduced 47 to 100% compared with the untreated fruits used as controls. No P. vaccinii or other fungi were detected on the control fruits inoculated with sterile distilled water. This is the first report on the use of ADBAC to control a field and storage rotting fungus, P. vaccinii. ADBAC is likely to be an important component to any integrated approach for reducing the risks associated with the presence of pathogenic microorganisms in or on foods.


2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


2017 ◽  
Vol 18 (3) ◽  
pp. 162-165 ◽  
Author(s):  
Robert S. Emmitt ◽  
James W. Buck

Production nurseries and daylily hybridizers in the southeast United States rely on the use of fungicides to manage daylily rust, caused by the fungus Puccinia hemerocallidis. Foliar sprays of pyraclostrobin, flutolanil, tebuconazole, myclobutanil, chlorothalonil, mancozeb, pyraclostrobin + boscalid, flutolanil + tebuconazole, flutolanil + myclobutanil, flutolanil + chlorothalonil, and flutolanil + mancozeb applied on 14-day intervals, and a nontreated control, were evaluated under high disease pressure at three locations in Griffin, GA, in 2015. Tebuconazole or the tebuconazole + flutolanil treatment consistently had the lowest area under the disease progress curve (AUDPC) of the treatments. The addition of flutolanil to chlorothalonil or mancozeb did not improve rust control and no difference in disease severity was observed in any treatment containing contact fungicides on all assessment dates. Single application costs ranged from $10.21 to $95.96 with tebuconazole providing excellent disease management at a relatively low cost per application ($13.90).


Sign in / Sign up

Export Citation Format

Share Document