sporulation capacity
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ebba Peterson ◽  
Niklaus J. Grünwald ◽  
Jennifer Parke

Soilborne inoculum arising from buried, infested leaf debris may contribute to the persistence of Phytophthora ramorum at recurrently positive nurseries. To initiate new epidemics, inoculum must not only survive, but produce sporangia during times conducive to infection at the soil surface. To assess this risk, we performed two year-long experiments in a soil plot at the National Ornamentals Research Site at Dominican University of California. Inoculated rhododendron leaf disks were buried at a depth of 5 or 15 cm in the early summer of 2014 or 2015. Inoculum was baited at the soil surface with non-infested leaf disks (2014 only), then retrieved to assess pathogen viability and sporulation capacity every five weeks. Two 14-week-long trials were conducted in 2016. We were able to consistently culture P. ramorum over all time periods. Soil incubation rapidly reduced the capacity of inoculum to sporulate, especially at 5 cm; however, sporulation capacity increased with the onset of seasonally cooler temperatures. P. ramorum was baited most frequently between November and January, especially from inoculum buried at 5 cm 1-day before the baiting period; in January we also baited P. ramorum from inoculum buried at 15 cm the previous June. We validate prior observations that P. ramorum poses a greater risk after exposure to cooler temperatures and provide evidence that infested leaf debris plays a role in the perpetuation of P. ramorum in nurseries. This work provides novel insights into the survival and epidemic behavior of P. ramorum in nursery soils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingxing Xu ◽  
Qiao Bian ◽  
Yun Luo ◽  
Xiaojun Song ◽  
Shan Lin ◽  
...  

Clostridioides difficile sequence type 2 (ST2) has been increasingly recognized as one of the major genotypes in China, while the genomic characteristics and biological phenotypes of Chinese ST2 strains remain to be determined. We used whole-genome sequencing and phylogenetic analysis to investigate the genomic features of 182 ST2 strains, isolated between 2011 and 2017. PCR ribotyping (RT) was performed, and antibiotic resistance, toxin concentration, and sporulation capacity were measured. The core genome Maximum-likelihood phylogenetic analysis showed that ST2 strains were distinctly segregated into two genetically diverse lineages [L1 (67.0% from Northern America) and L2], while L2 further divided into two sub-lineages, SL2a and SL2b (73.5% from China). The 36 virulence-related genes were widely distributed in ST2 genomes, but in which only 11 antibiotic resistance-associated genes were dispersedly found. Among the 25 SL2b sequenced isolates, RT014 (40.0%, n = 10) and RT020 (28.0%, n = 7) were two main genotypes with no significant difference on antibiotic resistance (χ2 = 0.024–2.667, P > 0.05). A non-synonymous amino acid substitution was found in tcdB (Y1975D) which was specific to SL2b. Although there was no significant difference in sporulation capacity between the two lineages, the average toxin B concentration (5.11 ± 3.20 ng/μL) in SL2b was significantly lower in comparison to those in L1 (10.49 ± 15.82 ng/μL) and SL2a (13.92 ± 2.39 ng/μL) (χ2 = 12.30, P < 0.05). This study described the genomic characteristics of C. difficile ST2, with many virulence loci and few antibiotic resistance elements. The Chinese ST2 strains with the mutation in codon 1975 of the tcdB gene clustering in SL2b circulating in China express low toxin B, which may be associated with mild or moderate C. difficile infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shumin Zhang ◽  
A. Rehman Khalid ◽  
Dongmei Guo ◽  
Jingping Zhang ◽  
Fangjie Xiong ◽  
...  

Phytophthora infestans, one of most famous pathogenic oomycetes, triggered the Great Irish Famine from 1845 to 1852. The target of rapamycin (TOR) is well known as a key gene in eukaryotes that controls cell growth, survival and development. However, it is unclear about its function in controlling the mycelial growth, sporulation capacity, spore germination and virulence of Phytophthora infestans. In this study, key components of the TOR signaling pathway are analyzed in detail. TOR inhibitors, including rapamycin (RAP), AZD8055 (AZD), KU-0063794 (KU), and Torin1, inhibit the mycelial growth, sporulation capacity, spore germination, and virulence of Phytophthora infestans with AZD showing the best inhibitory effects on Phytophthora infestans. Importantly, compared with a combination of RAP + KU or RAP + Torin1, the co-application of RAP and AZD show the best synergistic inhibitory effects on P. infestans, resulting in the reduced dosage and increased efficacy of drugs. Transcriptome analysis supports the synergistic effects of the combination of RAP and AZD on gene expression, functions and pathways related to the TOR signaling pathway. Thus, TOR is an important target for controlling Phytophthora infestans, and synergism based on the application of TOR inhibitors exhibit the potential for controlling the growth of Phytophthora infestans.


Author(s):  
Lincon Rafael da Silva ◽  
Marina Gabriela Marques ◽  
Paulo Henrique Pereira Costa Muniz ◽  
Thiago Alves Santos de Oliveira ◽  
Elizabeth Amélia Alves Duarte ◽  
...  

After long periods of storage, plant pathogen isolates lose their sporulation capacity. The objective of this study was to evaluate re-isolation methodologies for recovering sporulation of Pestalotiopsis grandis-urophylla isolates after subjection to a long period of storage. Isolates of P. grandis-urophylla were kept for 14 months on Petri dishes with PDA medium at 10°C. After this period, the isolate colonies showed reduced mycelial growth and no sporulation. The isolates were inoculated on healthy Eucalyptus grandis-urophylla leaves, and after ten days they were subjected to three re‑isolation methods: scraping of the lesions (S) removing of injured plant tissue fragments, followed by disinfestation (D) and without disinfestation (WD). Then, the purified isolates were evaluated for the recovery of its sporulation ability. The different methods for re-isolation resulted in the occurrence of differences among the isolates, showing that sporulation is an isolate-dependent feature. The three methods (S, WD and D) allowed the sporulation recovery of P. grandis-urophylla, even after these isolates have been subjected to 14 months.


2021 ◽  
Vol 5 (1) ◽  
pp. 004-013
Author(s):  
W Zenebe ◽  
T Daniel ◽  
G Weyessa

Coffee is one of the most essential crops that generate income for Ethiopian economic growth. However, its production faced with many factors primarily biotic entities. Among these, the fungal pathogen /Colletotrichum kahawae/ that induce coffee berry disease (CBD) is the main constraint of coffee production in the country. The pathogen is a very specialized and infects the green berries/fiscal par/which diminishes the income gained from it and disturbs the country’s economy in general and the producers in particular. Regarding to the disease level and related factors, little information is available in Western Ethiopia. Hence, this study was initiated to assess the magnitude of CBD in coffee fields, to characterize and evaluate the virulence of C. kahawae isolates from the study areas of Gidami district. Assessment was done in 9 selected kebeles of 45 total farms starting from July 2017. The results indicated that CBD was prevalence in all assessed areas with the range of 66% to 86% and 16% to 50% disease incidence and severity index (SI), respectively. The highest CBD intensity was observed in higher altitude with a significant positive correlation between disease incidence (r = 0.61) and severity (r = 0.55). Macro and microscopic characterization results revealed isolates diversity in terms of colony color, density, mycelia growth rate and conidial production. Moreover, mycelia growth rate differs significantly (p < 0.001) in the range between 2.2 to 4.3 mm/24 hrs. Similarly, the sporulation capacity widely ranged from 186.1 to 572.3 spores/ml. This were strongly agreed with the virulence test that revealed significant variation (p < 0.001) among isolates and infection percentage also ranged between 34.8% and 88.7%. In all, the study was not only showed the CBD is very important disease of coffee in the study area but also determines the virulence disparity among isolates. To be honest, the diversity/identity of C. kahawae isolates should be confirmed using more other reliable methods thru including additional sample areas as well.


Plant Disease ◽  
2021 ◽  
Author(s):  
Brian Mueller ◽  
Carol Groves ◽  
Damon L. Smith

Fusarium graminearum commonly causes Fusarium head blight (FHB) on wheat, barley, rice, and oats. Fusarium graminearum produces nivalenol and deoxynivalenol (DON) and forms derivatives of DON based on its acetylation sites. The fungus is profiled into chemotypes based on DON derivative chemotypes (3 acetyldeoxynivalenol (3ADON) chemotype; 15 acetyldeoxynivalenol (15ADON) chemotype) and/or the nivalenol (NIV) chemotype. The current study assessed the Fusarium population found on wheat and the chemotype profile of the isolates collected from 2016 and 2017 in Wisconsin. Fusarium graminearum was isolated from all locations sampled in both 2016 and 2017. Fusarium culmorum was isolated only from Door County in 2016. Over both growing seasons, 91% of isolates were identified as the 15ADON chemotype while 9% of isolates were identified as the 3ADON chemotype. Aggressiveness was quantified by area under disease progress curve (AUDPC). The isolates with the highest AUDPC values were from the highest wheat producing cropping districts in the state. Deoxynivalenol production in grain and sporulation and growth rate in vitro were compared to aggressiveness in the greenhouse. Our results showed that 3ADON isolates in Wisconsin were among the highest in sporulation capacity, growth rate, and DON production in grain. However, there were no significant differences in aggressiveness between the 3ADON and 15ADON isolates. The results of this research detail the baseline frequency and distribution of 3ADON and 15ADON chemotypes observed in Wisconsin. Chemotype distributions within populations of F. graminearum in Wisconsin should continue to be monitored in the future.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 299
Author(s):  
Shumin Zhang ◽  
Meiquan Zhang ◽  
A. Rehman Khalid ◽  
Linxuan Li ◽  
Yang Chen ◽  
...  

Phytophthora infestans, the causal agent of potato late blight, triggered the devastating Great Irish Famine that lasted from 1845 to 1852. Today, it is still the greatest threat to the potato yield. Ethylicin is a broad-spectrum biomimetic-fungicide. However, its application in the control of Phytophthora infestans is still unknown. In this study, we investigated the effects of ethylicin on Phytophthora infestans. We found that ethylicin inhibited the mycelial growth, sporulation capacity, spore germination and virulence of Phytophthora infestans. Furthermore, the integrated analysis of proteomics and metabolomics indicates that ethylicin may inhibit peptide or protein biosynthesis by suppressing both the ribosomal function and amino acid metabolism, causing an inhibitory effect on Phytophthora infestans. These observations indicate that ethylicin may be an anti-oomycete agent that can be used to control Phytophthora infestans.


2019 ◽  
Vol 3 (2) ◽  
pp. 58
Author(s):  
Soedarsono Soedarsono ◽  
Elisabeth Tri Wahyuni Widoretno

The incidence of lung aspergillosis increases year to year. Lung aspergilloma is the most recognizable form of aspergillosis. Since 1980, the most common condition for initiating aspergillosis is tuberculosis (TB). Untreated pulmonary TB can cause several complications, such as decreases of pulmonary function, persistent pulmonary symptoms and Chronic Pulmonary Aspergillosis (CPA). More than 90% Aspergillosis is caused by Aspergillus fumigatus, this type is also widely found in people with TB. This type of fungus has a simple biological cycle with high sporulation capacity, which causes the release of conidia into the atmosphere with high concentrations. Humans inhale hundreds of conidia each day. Immuno competent hosts are capable of destroying conidia with the pulmonary immune system. Aspergillus infections cause illness when the host response is too strong or weak to the aspergillus antigen. The CPA morbidity rate is quite large with systemic symptoms and respiratory symptoms due to progressive pulmonary fibrosis and diminished lung function. During treatment, the CPA has a fatality rate of 20-33% in the short term and more than 50% in the span of 5 years. The Research Committee of the British Tuberculosis Association found that patients with post-TB cavity had a high risk of fungal colonization. The cavity formed in pulmonary TB is a suitable place for the development of various organisms including the fungus because it contains enough oxygen and necrotic tissue. The most common form of CPA associated with TB is Aspergilloma. In this review we will focus on aspergilloma, its diagnosis and management.


2018 ◽  
Vol 108 (6) ◽  
pp. 721-729
Author(s):  
Paul W. Tooley ◽  
Marsha Browning

We examined the impact of relative humidity (RH) on Phytophthora ramorum sporangia production on Rhododendron ‘Cunningham’s White’. When diseased plants were maintained under continuous moisture in a mist tent, sporangia were collected from some plants for 22 weeks. More than 3,000 sporangia/leaf/week were collected over the first 3 weeks but levels declined to <100 sporangia/leaf/week after 7 weeks. We also examined the impact of drying on P. ramorum sporangia production. Diseased, detached leaves were maintained in humidity chambers (100, 96.2, 84.5, 74.9, and 56.2% RH) for up to 9 weeks and removed weekly to assess sporulation. For comparison, diseased leaves were harvested from plants maintained with dry foliage or subjected to 10 h of simulated dew nightly. All leaves supported sporulation following 5 weeks at 100% RH, 3 weeks at 96.2% RH, and 1 week at 84.5% RH. All leaves collected from plants subjected to nightly dew supported sporulation for 3 weeks; however, only 66.7% of leaves collected from plants with dry foliage supported sporulation after 1 week. Knowledge of the effects of RH levels on P. ramorum sporulation capacity will prove useful in terms of disease management recommendations and for development of predictive models and pest risk assessments.


2016 ◽  
Vol 31 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Laetitia Cotin-Galvan ◽  
Adrien C. Pozzi ◽  
Guillaume Schwob ◽  
Pascale Fournier ◽  
Maria P. Fernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document