ANALYSIS OF THE CAUSES OF ACCIDENTAL DESTRUCTION OF THE BRIDGE THROUGH R. CHORTOMLYK

Author(s):  
Vasyl Redchenko
Keyword(s):  

The information on emergency deterioration of the bridge span over the River Chortomlyk is presented. The analysis of the causes of this deteriortion is stated.

1976 ◽  
Vol 102 (1) ◽  
pp. 257-259
Author(s):  
Amitabha Ghoshal ◽  
Jagadish C. Ganguly ◽  
Himangsu K. Banerjee ◽  
Mahesh P. Kapoor
Keyword(s):  

2018 ◽  
Vol 216 ◽  
pp. 01015
Author(s):  
Darya Provornaya ◽  
Sergey Glushkov ◽  
Leonid Solovyev

The paper considers the issues of vibration isolation of railway bridge units on high-speed lines and seismic protection using dynamic vibration dampers. The purpose of the research is to justify the efficiency of damping the dynamic vibrations of the bridge supports with seismic insulating support parts. The research methodology involves building mathematical models of the systems under consideration and their numerical analysis. The methods of structural mechanics and dynamics of structures were used for solving the assigned tasks. The basic mathematical dependences of the vibration system with two seismic masses were developed. The rolling stock was represented by concentrated forces moving along the span structure. As a result, a new scheme for dynamic damping of vibration of the bridge supports was proposed according to which the span structure used as the dynamic vibration damper has an additional fastening on a rigid abutment.


2018 ◽  
Vol 174 ◽  
pp. 04003 ◽  
Author(s):  
Tomasz Maleska ◽  
Damian Beben

The design codes and calculation methods related to the corrugated steel plate (CSP) bridges and culverts say only on the minimum soil height. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing the vehicles), such approach seems to be reasonable. However, it is important to know how the CSP bridges with high the soil covers behave under the seismic loads. This paper is presented the result of numerical study of CSP bridge with different high cover under seismic excitation. The analysed CSP railway bridge in the cross section has two closed pipe-arches. The span of shells is 4.40 m and the height of shells is 2.80 m. The load-carrying structure was constructed as two shells assembled from CSP sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The real soil cover depth over the CSP structure (including ballast, blanket and backfill) equals 2.40 m. In this study two heights of soil cover were analysed (2.40 m and 5.00 m). Numerical analysis was conducted using the DIANA program based on finite element method (FEM). A linear model with El Centro records and Time History was used to analyse the problem.


Author(s):  
Ahmed Rageh ◽  
Daniel Linzell ◽  
Samantha Lopez ◽  
Saeed Eftekhar Azam

This chapter extends application of a framework proposed by the authors (73, 74) for automated damage detection using strain measurements to study feasibility of using sensors that can measure accelerations, tilts, and displacements. The study utilized three-dimensional (3D) finite element models of double track, riveted, steel truss span, and girder bridge span under routine train loads. The chapter also includes three instrumentation schemes for each bridge span (65) to investigate the applicability of the framework to other bridge systems and sensor networks. Connection damage was simulated by reducing rotational spring stiffness at member ends and various responses were extracted for each damage scenario. The methodology utilizes Supervised Machine Learning to automatically determine damage location (DL) and intensity (DI). Simulated experiments showed that DLs and DIs were detected accurately for both spans with various structural responses and using different instrumentation plans.


2018 ◽  
Vol 22 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Ledong Zhu ◽  
Xiao Tan ◽  
Zhenshan Guo ◽  
Quanshun Ding

To improve the flutter performance of a suspension bridge with a 1088-m-span truss-stiffened deck, the aerodynamic measures of upper and lower central stabilizing barriers were investigated at first via wind tunnel tests of sectional model under the normal wind condition. The yaw wind effect on the flutter performance of the bridge with the above aerodynamic measures was then examined via a series of wind tunnel tests of oblique sectional models. The test results show that the effect of the lower central stabilizing barrier on the flutter critical wind speed is remarkably different from that of the upper central stabilizing barrier for both the normal and skew wind cases. The inclination angle +3° is the most unfavorable inclination angle to the flutter performance of the truss-stiffened suspension bridge no matter whether the aerodynamic control measures are adopted or not. Furthermore, for most cases, the lowest flutter critical wind speed occurs when the incident wind deviates from the normal direction of the bridge span by a small yaw angle between 5° and 10°.


2011 ◽  
Vol 38 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Grant Rutherford ◽  
Dean K. McNeill

This paper investigates the use of a pre-existing network of resistive strain gauges located on the girders of a single bridge span to determine the classification and estimate the weight of vehicles traveling over that span. Vehicle events on the bridge are identified automatically by a measurement filtering algorithm. Manual classification labels are then applied to a subset of these events to investigate the strain signal features that distinguish various vehicle classes. Trends in these features over time are investigated, and an estimate of vehicle weight is obtained from these features without the need for detailed knowledge of the structure's composition. Additionally, a number of neural network configurations are tested on the problem of determining vehicle class from these features. Results are tested on data from both the summer and winter seasons. Finally, estimates of vehicle weight are improved by using the classification network to filter input events.


2008 ◽  
Vol 4 (S256) ◽  
pp. 191-202
Author(s):  
J. M. Oliveira

AbstractThe Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Large Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.


2019 ◽  
Vol 265 ◽  
pp. 03009
Author(s):  
Jozef Melcer ◽  
Daniela Kuchárová ◽  
Gabriela Lajčáková

The SNP Bridge over the Danube in Bratislava represents an attractive steel cable-stayed bridge. Its length is 431.8 m. The submitted paper describes the methodology of experimental testing and presents some results of the loading test. During this test it was observed that the dilatation unit on the right water side shows some failure. Due to this failure the dilatation unit acts as a generator of vibration of the end bridge span. On the basis of experimental measurements this failure was detected and the dilatation unit was renovated.


2003 ◽  
Vol 10 (5-6) ◽  
pp. 325-338 ◽  
Author(s):  
V.G. Rao ◽  
S. Talukdar

The fatigue damage assessment of bridge components by conducting a full scale fatigue testing is often prohibitive. A need, therefore, exists to estimate the fatigue damage in bridge components by a simulation of bridge-vehicle interaction dynamics due to the action of the actual traffic. In the present paper, a systematic method has been outlined to find the fatigue damage in the continuous bridge girder based on stress range frequency histogram and fatigue strength parameters of the bridge materials. Vehicle induced time history of maximum flexural stresses has been obtained by Monte Carlo simulation process and utilized to develop the stress range frequency histogram taking into consideration of the annual traffic volume. The linear damage accumulation theory is then applied to calculate cumulative damage index and fatigue life of the bridge. Effect of the bridge span, pavement condition, increase of vehicle operating speed, weight and suspension characteristics on fatigue life of the bridge have been examined.


Sign in / Sign up

Export Citation Format

Share Document