critical wind speed
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guoping Zheng ◽  
Dapeng Xue ◽  
Yizhou Zhuang ◽  
Yusheng Zhu

Fire is the most deadly risk during tunnel operation. Early rapid response and a reasonable smoke control plan are very important to evaluate tunnel fire performance. In order to study the relevant time factors for smoke management in a highway tunnel, firstly, the logical sequence and time of the fire alarm system (FAS) startup are investigated and analyzed. Then, according to the one-dimensional fluid mechanics model, the time rule of adjusting the airflow field in the tunnel from the normal operation stage to the emergency ventilation state is analyzed theoretically. Finally, the abovementioned theoretical formulas are verified through the employment of model experiments. The analysis shows that the time that passes from the start of the fire to when the exhaust fan is activated is close to 3 minutes. The time required to form a stable critical wind speed, however, is close to 7 minutes, which is longer than the 5 minutes it takes for the fire to reach its maximum temperature. Due to inertia, it takes about 0.5 to 2 minutes for the air velocity in tunnels of different lengths to drop from the traffic piston wind speed to the critical wind speed. If reverse smoke extraction is required, however, the duration is between 3 and 8 minutes. The conclusion is of guiding significance for the preparation of the emergency linkage control scheme for tunnels, as well as for the setting of initial boundary conditions for CFD fire simulations.


Author(s):  
Jiunn-Yin Tsay

To meet the need of constructing fixed cross strait links, super-long span bridge with a main span over 2 000[Formula: see text]m is considered as a candidate for their ability to cross deep and wide straits. To this end, some super-long span bridges with proper cable and girder systems were previously proposed and studied. The major design considerations are aimed at adopting new cable material, increasing the entire rigidity of the bridge, stabilizing the dynamic characteristics, strengthening the deck sections, etc. In this paper, a brief review of main cable and girder system is first given of the concepts previously proposed for the design of super-long span bridges. Then some typical examples are studied, focused on various issues related to the design of super-long span bridges, including composite cable, the unstressed length and tension force of the main cable, the stiffness and mass effects of the deck on critical wind speed, and the critical wind speed of various cable systems. The most challenges in super-long span bridges are to solve aerostatic and aerodynamic instability at required design wind speed. In this connection, the wind-induced aerostatic instability of super-long span bridges is studied by a two-stage geometric nonlinear analysis for dead loads and wind loads. The developed program adopted herein for geometric nonlinear analysis was verified and confirmed before. The proposed methods (i.e. composite cable, slotted girder, increasing deck stiffness and mass, cable layout, etc.) obtained for all the examples are in agreement with this study, which indicates applicability of the design approaches presented.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jun Xue ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Keru Wang ◽  
Peng Hou ◽  
...  

Abstract Background The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters evaluate lodging resistance during the later growth stage of maize. Clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field. Results The results showed that, in the late growth stage, with increasing number of days after physiological maturity, (1) the stalk lodging rate gradually increased, (2) the stalk breaking force and rind penetration strength (RPS) of the third internode above the soil gradually decreased, and (3) the critical wind speed of stalk breaking increased first and then decreased, and was highest at about 16–24 days after physiological maturity. The position of stalk lodging mostly occurred between second and fifth internodes. The torque at the base of maize plant increased as wind speed increased, and the different of torque was excited among different maize cultivars under same wind speed. Furthermore, the stalk lodging rate was significantly negatively correlated with the critical wind speed of stalk breaking. Additionally, the critical wind speed of stalk breaking was significantly positively correlated with the stalk breaking force and the RPS. Conclusion This indicates that the critical wind speed of stalk breaking is a superior way to determine the stalk lodging resistance. These results suggest that, in the late growth stage, the decrease in the stalk mechanical strength is an important reason for the decrease in the critical wind speed of stalk breaking and the increase in the lodging rate.


2020 ◽  
Author(s):  
Jun Xue ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Keru Wang ◽  
Peng Hou ◽  
...  

Abstract Background: The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters evaluate lodging resistance during the later growth stage of maize . Clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field. Results: The results showed that, in the late growth stage, with increasing number of days after physiological maturity, (1) the stalk lodging rate gradually increased, (2) the stalk breaking force and rind penetration strength (RPS) of the third internode above the soil gradually decreased, and (3) the critical wind speed of stalk breaking increased first and then decreased, and was highest at about 16–24 days after physiological maturity. The position of stalk lodging mostly occured betwen second and fifth internodes. The torque at the base of maize plant increased as wind speed increased, and ther different of torque was excited among different maize cultivars under same wind speed. Furthermore, the stalk lodging rate was significantly negatively correlated with the critical wind speed of stalk breaking. Additionally, the critical wind speed of stalk breaking was significantly positively correlated with the stalk breaking force and the RPS. Conclusion: This indicates that the critical wind speed of stalk breaking is a superior way to determine the stalk lodging resistance. These results suggest that, in the late growth stage, the decrease in the stalk mechanical strength is an important reason for the decrease in the critical wind speed of stalk breaking and the increase in the lodging rate.


2020 ◽  
Author(s):  
Jun Xue ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Keru Wang ◽  
Peng Hou ◽  
...  

Abstract Background: The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters evaluate lodging resistance during the later growth stage of maize. Clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field. Results: The results showed that, in the late growth stage, with increasing number of days after physiological maturity, (1) the stalk lodging rate gradually increased, (2) the stalk breaking force and rind penetration strength (RPS) of the third internode above the soil gradually decreased, and (3) the critical wind speed of stalk breaking increased first and then decreased, and was highest at about 16–24 days after physiological maturity. The position of stalk lodging mostly occured betwen second and fifth internodes. The torque at the base of maize plant increased as wind speed increased, and ther different of torque was excited among different maize cultivars under same wind speed. Furthermore, the stalk lodging rate was significantly negatively correlated with the critical wind speed of stalk breaking. Additionally, the critical wind speed of stalk breaking was significantly positively correlated with the stalk breaking force and the RPS. Conclusion: This indicates that the critical wind speed of stalk breaking is a superior way to determine the stalk lodging resistance. These results suggest that, in the late growth stage, the decrease in the stalk mechanical strength is an important reason for the decrease in the critical wind speed of stalk breaking and the increase in the lodging rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Bo Yan ◽  
Mengqi Cai

A new calculation method of critical wind speed based on three degrees of freedom (3-DOF) is proposed for galloping problem of iced transmission line. Based on the quasistatic theory, the aerodynamic load of iced transmission line is obtained, which considers the influence of transverse and torsional motion on the relative wind angle of attack. Finally, the equivalent galloping model of 3-DOF iced transmission line is established. At the initial angle of attack, the aerodynamic load is expanded by Taylor, and the unsymmetrical linear aerodynamic coefficient matrix is obtained. The Routh–Hurwitz criterion is used to judge the stability of iced transmission line system, and then the critical wind speed is calculated. The in-plane and out-plane frequencies corresponding to the first-order mode of the transmission line are solved by the analytical method and numerical simulation method. The results obtained by the two methods are compared and verified. The influence of dimensionless transmission line parameter λ on the in-plane and out-of-plane frequencies is discussed. The aerodynamic coefficients of the iced transmission line are measured by wind tunnel test and the aerodynamic characteristics are analyzed. According to the theoretical formula, the critical wind speed is calculated by MATLAB. The critical wind speed determined in this paper is compared with the critical wind speed determined by Den Hartog and Nigol theory. The influences of torsional vibration frequency, ice thickness, and ice shape on critical wind speed are analyzed. The research results of this paper have important theoretical significance for the stability judgment of iced transmission lines.


2020 ◽  
Author(s):  
Jun Xue ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Keru Wang ◽  
Peng Hou ◽  
...  

Abstract Background The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters as evaluate lodging resistance during the later growth stage of maize, and clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field. Results The results showed that, in the late growth stage, with increasing number of days after physiological maturity, (1) the stalk lodging rate gradually increased, (2) the stalk breaking force and rind penetration strength (RPS) of the third internode above the soil gradually decreased, and (3) the critical wind speed of stalk breaking increased first and then decreased, and was highest at about 16–24 days after physiological maturity. Furthermore, the stalk lodging rate was significantly negatively correlated with the critical wind speed of stalk breaking, however was not correlated with plant height, ear height, stalk breaking force, or the RPS. Additionally, the critical wind speed of stalk breaking was significantly positively correlated with the stalk breaking force and the RPS. Conclusion This indicates that the critical wind speed of stalk breaking is a superior way to determine the stalk lodging resistance compared to traditional indicators. These results suggest that, in the late growth stage, the decrease in the stalk mechanical strength is an important reason for the decrease in the critical wind speed of stalk breaking and the increase in the lodging rate.


Sign in / Sign up

Export Citation Format

Share Document