scholarly journals On the Maintenance Modeling of a Hybrid Model with Exponential Repair Efficiency

Author(s):  
Wassila Nissas ◽  
Soufiane Gasmi

In the reliability literature, maintenance efficiency is usually dealt with as a fixed value. Since repairable systems are subject to different degrees and types of repair, it is more convenient to regard a random variable for maintenance efficiency. This paper is devoted to the statistical study of a general hybrid model for repairable systems working under imperfect maintenance. For both failure improvement and virtual age reduction of the system, maintenance efficiency is assumed to be random, with an exponential distribution as a probability density function. The likelihood function of this model is provided, and the estimation of the model parameters is computed by considering the maximization likelihood procedure. Obtained results were tested and applied to simulated and real data sets. To construct confidence intervals, the bias-corrected accelerated bootstrap method has been used.

Author(s):  
Aneeqa Khadim ◽  
Aamir Saghir ◽  
Tassaddaq Hussain

Developments of new probability models for data analysis are keen interest of importance for all fields. The log-Dagum distribution has a prominent role in the theory and practice of statistics. In this article, a new family of continuous distributions generated from a log Dagum random variable called the log-Dagum Weibull distribution is proposed. The key properties of the proposed distribution are derived. Its density function can be symmetrical, left-skewed, right-skewed and reversed-J shaped and can have increasing, decreasing, bathtub hazard rates shaped. The model parameters are estimated by the method of maximum likelihood and illustrate its importance by means of applications to real data sets.


2021 ◽  
Vol 50 (3) ◽  
pp. 77-105
Author(s):  
Devendra Kumar ◽  
Mazen Nassar ◽  
Ahmed Z. Afify ◽  
Sanku Dey

A new continuous four-parameter lifetime distribution is introduced by compounding the distribution of the maximum of a sequence of an independently identically exponentiated Lomax distributed random variables and zero truncated Poisson random variable, defined as the complementary exponentiated Lomax Poisson (CELP) distribution. The new distribution which exhibits decreasing and upside down bathtub shaped density while the distribution has the ability to model lifetime data with decreasing, increasing and upside-down bathtub shaped failure rates. The new distribution has a number of well-known lifetime special sub-models, such as Lomax-zero truncated Poisson distribution, exponentiated Pareto-zero truncated Poisson distribution and Pareto- zero truncated Poisson distribution. A comprehensive account of the mathematical and statistical properties of the new distribution is presented. The model parameters are obtained by the methods of maximum likelihood, least squares, weighted least squares, percentiles, maximum product of spacing and Cram\'er-von-Mises and compared them using Monte Carlo simulation study. We illustrate the performance of the proposed distribution by means of two real data sets and both the data sets show the new distribution is more appropriate as compared to the transmuted Lomax, beta exponentiated Lomax, McDonald Lomax, Kumaraswamy Lomax, Weibull Lomax, Burr X Lomax and Lomax distributions.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2016 ◽  
Author(s):  
Kassian Kobert ◽  
Alexandros Stamatakis ◽  
Tomáš Flouri

The phylogenetic likelihood function is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory saving attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 10-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the phylogenetic likelihood function currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation.


Author(s):  
Mohamed E. Mead ◽  
Gauss M. Cordeiro ◽  
Ahmed Z. Afify ◽  
Hazem Al Mofleh

Mahdavi A. and Kundu D. (2017) introduced a family for generating univariate distributions called the alpha power transformation. They studied as a special case the properties of the alpha power transformed exponential distribution. We provide some mathematical properties of this distribution and define a four-parameter lifetime model called the alpha power exponentiated Weibull distribution. It generalizes some well-known lifetime models such as the exponentiated exponential, exponentiated Rayleigh, exponentiated Weibull and Weibull distributions. The importance of the new distribution comes from its ability to model monotone and non-monotone failure rate functions, which are quite common in reliability studies. We derive some basic properties of the proposed distribution including quantile and generating functions, moments and order statistics. The maximum likelihood method is used to estimate the model parameters. Simulation results investigate the performance of the estimates. We illustrate the importance of the proposed distribution over the McDonald Weibull, beta Weibull, modified Weibull, transmuted Weibull and exponentiated Weibull distributions by means of two real data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 77-91
Author(s):  
Broderick Oluyede ◽  
Boikanyo Makubate ◽  
Adeniyi Fagbamigbe ◽  
Precious Mdlongwa

A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is introduced and its properties are explored. This new distribution contains several new and well known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic, Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull, Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution including moments and conditional moments are presented. Maximum likelihood estimation technique is used to estimate the model parameters. Finally, applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Sign in / Sign up

Export Citation Format

Share Document