scholarly journals A log-Dagum Weibull Distribution: Properties and Characterization

Author(s):  
Aneeqa Khadim ◽  
Aamir Saghir ◽  
Tassaddaq Hussain

Developments of new probability models for data analysis are keen interest of importance for all fields. The log-Dagum distribution has a prominent role in the theory and practice of statistics. In this article, a new family of continuous distributions generated from a log Dagum random variable called the log-Dagum Weibull distribution is proposed. The key properties of the proposed distribution are derived. Its density function can be symmetrical, left-skewed, right-skewed and reversed-J shaped and can have increasing, decreasing, bathtub hazard rates shaped. The model parameters are estimated by the method of maximum likelihood and illustrate its importance by means of applications to real data sets.

2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G. G. Hamedani

We propose a new generator of univariate continuous distributions with two extra parameters called the transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by Gomes-Silva et al. [1]. Some mathematical properties of the new generator such as, the ordinary and incomplete moments, generating function, stress strength model, Rényi entropy, probability weighted moments and order statistics are investigated. Certain characterisations of the proposed family are estimated. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. The potentiality of the new family is illustrated by means of five applications to real data sets.  


Author(s):  
Haitham Yousof ◽  
Muhammad Mansoor ◽  
Morad Alizadeh ◽  
Ahmed Afify ◽  
Indranil Ghosh

We study a new family of distributions defined by the minimum of the Poissonrandom number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of theproposed family.


Author(s):  
Wassila Nissas ◽  
Soufiane Gasmi

In the reliability literature, maintenance efficiency is usually dealt with as a fixed value. Since repairable systems are subject to different degrees and types of repair, it is more convenient to regard a random variable for maintenance efficiency. This paper is devoted to the statistical study of a general hybrid model for repairable systems working under imperfect maintenance. For both failure improvement and virtual age reduction of the system, maintenance efficiency is assumed to be random, with an exponential distribution as a probability density function. The likelihood function of this model is provided, and the estimation of the model parameters is computed by considering the maximization likelihood procedure. Obtained results were tested and applied to simulated and real data sets. To construct confidence intervals, the bias-corrected accelerated bootstrap method has been used.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed Z. Afify ◽  
Haitham M. Yousof ◽  
Morad Alizadeh ◽  
Indranil Ghosh ◽  
Samik Ray ◽  
...  

AbstractWe introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.


2021 ◽  
Vol 9 (4) ◽  
pp. 942-962
Author(s):  
Mohamed Abo Raya

This work introduces a new one-parameter compound G family. Relevant statistical properties are derived. The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewedwith one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and “decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means of two real data sets.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2635-2652 ◽  
Author(s):  
M. El-Morshedy ◽  
M.S. Eliwa

In this paper, a new generator of continuous distributions called the odd flexible Weibull-H family is proposed and studied. Some of its statistical properties including quantile, skewness, kurtosis, hazard rate function, moments, incomplete moments, mean deviations, coefficient of variation, Bonferroni and Lorenz curves, moments of the residual (past) lifetimes and entropies are studied. Two special models are introduced and discussed in-detail. The maximum likelihood method is used to estimate the model parameters based on complete and upper record data. Adetailed simulation study is carried out to examine the bias and mean square error of maximum likelihood estimators. Finally, three applications to real data sets show the flexibility of the new family.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2511-2531 ◽  
Author(s):  
M.S. Eliwa ◽  
M. El-Morshedy

In this paper we have considered one model, namely the bivariate discrete inverse Weibull distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are studied. Maximum likelihood and Bayesian methods are used to estimate the model parameters. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the proposedmodel.


Sign in / Sign up

Export Citation Format

Share Document