Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat

2011 ◽  
Vol 5 ◽  
Author(s):  
Dobolyi A.
Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5830-5840 ◽  
Author(s):  
Melinda Cservenák ◽  
Ibolya Bodnár ◽  
Ted B. Usdin ◽  
Miklós Palkovits ◽  
György M. Nagy ◽  
...  

Tuberoinfundibular peptide of 39 residues (TIP39) and the PTH-2 receptor (PTH2R) constitute a peptide-receptor neuromodulator system. Based on the abundance of TIP39 fibers and axonal terminals as well as PTH2R-containing neurons and their processes in the hypothalamic para- and periventricular and arcuate nuclei TIP39 has been suggested to play a role in neuroendocrine regulation. We showed previously that TIP39 expression decreased dramatically by adulthood. In the present study, using in situ hybridization histochemistry, real-time RT-PCR, and immunohistochemistry, we found that TIP39 mRNA and peptide expression levels are markedly elevated in the posterior intralaminar complex of the thalamus (PIL) of lactating dams, one of the three locations of TIP39-containing cell bodies in the brain. In addition, in mother rats, these TIP39 neurons showed Fos expression in response to pup exposure. Transection of TIP39 fibers originating in the PIL resulted in an ipsilateral disappearance of TIP39 immunoreactivity throughout the mediobasal hypothalamus of mother rats, suggesting that TIP39 fibers there arise from the PIL. To elucidate the function of TIP39 activation in dams, mothers separated from their pups for 4 h on postpartum d 9 received injection of a PTH2R antagonist into the lateral ventricle 5 min before returning the pups. Blood samples were taken seven times during the experimental period through jugular cannulae. The PTH2R antagonist administered in two different concentrations markedly inhibited suckling-induced elevation of plasma prolactin levels in a dose-dependent manner. These results suggest that TIP39 neurons in the PIL may regulate suckling-induced prolactin release in rat dams.


1985 ◽  
Vol 108 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Hidesuke Kaji ◽  
Kazuo Chihara ◽  
Naoto Minamitani ◽  
Hitoshi Kodama ◽  
Tetsuya Kita ◽  
...  

Abstract. The effect of [Asu]eel calcitonin (ECT), an equipotent analogue of eel CT, on prolactin (Prl) secretion was examined in 12 healthy male subjects and in 6 patients with prolactinoma. In healthy subjects, ECT (0.5 μg/kg body weight · h) or saline was infused for 2 h and TRH was injected iv as a bolus of 500 μg at 1 h of ECT or saline administration. ECT did not affect basal Prl levels during 1 h of infusion. TRH caused a significant increase of plasma Prl with peak values of 75.2 ± 11.6 ng/ml in ECT-infused subjects, which did not differ from those infused with saline (68.5 ± 8.3 ng/ml). Next, an iv bolus injection of regular insulin (0.1 U/kg body weight) was followed by an infusion of ECT or saline alone. Plasma Prl peaks after hypoglycaemic stress were significantly lower in ECT-infused subjects than those in saline-injected controls (ECT, 16.5 ± 3.1 vs 33.5 ± 9.6 ng/ml, P < 0.05). In patients with prolactinoma, basal levels of plasma Prl ranging from 42.0–4130 ng/ml failed to change during iv infusion of ECT. Moreover, ECT (10−9–10−6m) did not affect Prl release from prolactinoma tissues perifused in vitro. These findings suggest that ECT may not act directly on the pituitary to modify Prl release. Rather, peripherally administered ECT appears to suppress Prl release via the central nervous system.


2009 ◽  
Vol 160 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Anna K.Y. Kwong ◽  
Andus H.Y. Ng ◽  
L.Y. Leung ◽  
Angel K.Y. Man ◽  
Norman Y.S. Woo

1982 ◽  
Vol 94 (3) ◽  
pp. 347-NP ◽  
Author(s):  
M. J. Cronin ◽  
D. A. Keefer ◽  
C. A. Valdenegro ◽  
L. G. Dabney ◽  
R. M. MacLeod

The MtTW15 transplantable pituitary tumour grown in rats was tested in vitro for the ability of dopamine agonists to affect prolactin secretion and for the existence of dopamine receptors. Prolactin release from enzymatically dispersed cells and non-enzymatically treated tissue fragments of both the tumour and the anterior pituitary gland was determined in a cell perifusion column apparatus. Dopamine (0·1–5 μmol/l), bromocriptine (50 nmol/l) and the dopamine antagonist haloperidol (100 nmol/l) had no effect on prolactin release from the tumour cells. In contrast, dopamine (500 nmol/l) inhibited prolactin secretion from normal anterior pituitary cells in a parallel cell column and haloperidol blocked this inhibition. Although oestrogen treatment in vivo stimulated prolactin release in vitro when the tumour was removed and studied in the cell column, oestrogen had no effect on the inability of dopamine to modify the prolactin secretion. Growth hormone release from the tumour cells was not affected by dopamine. Although MtTW15 cells were refractory to dopaminergic inhibition of prolactin release, the dopamine receptors present in tumour homogenates were indistinguishable from the dopamine receptors previously defined in the normal anterior pituitary gland. The binding of the dopamine antagonist [3H]spiperone to the tumour was saturable (110 fmol/mg protein), of high affinity to one apparent class of sites (dissociation constant = 0·12 nmol/l), reversible and sensitive to guanine nucleotides. The pharmacology of the binding was defined in competition studies with a large number of agonists and antagonists. From the order of potency of these agents, a dopaminergic interaction was apparent. We conclude that the prolactin-secreting MtTW15 tumour cells appear to be completely unresponsive to dopamine or to the potent dopamine agonist bromocriptine, in spite of apparently normal dopamine receptors in the tumour.


1980 ◽  
Vol 87 (1) ◽  
pp. 95-103 ◽  
Author(s):  
G. DELITALA ◽  
T. YEO ◽  
ASHLEY GROSSMAN ◽  
N. R. HATHWAY ◽  
G. M. BESSER

The inhibitory effects of dopamine and various ergot alkaloids on prolactin secretion were studied using continuously perfused columns of dispersed rat anterior pituitary cells. Bromocriptine (5 nmol/l) and lisuride hydrogen maleate (5 nmol/l) both inhibited prolactin secretion, the effects persisting for more than 3 h after the end of the administration of the drugs. A similar although less long-lasting effect was observed with lergotrile (50 nmol/l) and the new ergoline derivative, pergolide (5 nmol/l). These effects contrasted with the rapid disappearance of the action of dopamine. The potency estimates of the ergots relative to that of dopamine were: lergotrile, 2·3; bromocriptine, 13; lisuride, 15; pergolide, 23. The dopamine-receptor blocking drugs, metoclopramide and haloperidol, antagonized the prolactin release-inhibiting activity of the compounds; bromocriptine and lisuride showed the highest resistance to this dopaminergic blockade. The results suggested that the direct effect of the ergot derivatives on dispersed pituitary cells was mediated through dopamine receptors and emphasized the long-lasting action of bromocriptine and lisuride in vitro.


2003 ◽  
Vol 278 (47) ◽  
pp. 46270-46277 ◽  
Author(s):  
Mu-Lan He ◽  
Arturo E. Gonzalez-Iglesias ◽  
Stanko S. Stojilkovic

Sign in / Sign up

Export Citation Format

Share Document