scholarly journals Tuberoinfundibular Peptide of 39 Residues Is Activated during Lactation and Participates in the Suckling-Induced Prolactin Release in Rat

Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5830-5840 ◽  
Author(s):  
Melinda Cservenák ◽  
Ibolya Bodnár ◽  
Ted B. Usdin ◽  
Miklós Palkovits ◽  
György M. Nagy ◽  
...  

Tuberoinfundibular peptide of 39 residues (TIP39) and the PTH-2 receptor (PTH2R) constitute a peptide-receptor neuromodulator system. Based on the abundance of TIP39 fibers and axonal terminals as well as PTH2R-containing neurons and their processes in the hypothalamic para- and periventricular and arcuate nuclei TIP39 has been suggested to play a role in neuroendocrine regulation. We showed previously that TIP39 expression decreased dramatically by adulthood. In the present study, using in situ hybridization histochemistry, real-time RT-PCR, and immunohistochemistry, we found that TIP39 mRNA and peptide expression levels are markedly elevated in the posterior intralaminar complex of the thalamus (PIL) of lactating dams, one of the three locations of TIP39-containing cell bodies in the brain. In addition, in mother rats, these TIP39 neurons showed Fos expression in response to pup exposure. Transection of TIP39 fibers originating in the PIL resulted in an ipsilateral disappearance of TIP39 immunoreactivity throughout the mediobasal hypothalamus of mother rats, suggesting that TIP39 fibers there arise from the PIL. To elucidate the function of TIP39 activation in dams, mothers separated from their pups for 4 h on postpartum d 9 received injection of a PTH2R antagonist into the lateral ventricle 5 min before returning the pups. Blood samples were taken seven times during the experimental period through jugular cannulae. The PTH2R antagonist administered in two different concentrations markedly inhibited suckling-induced elevation of plasma prolactin levels in a dose-dependent manner. These results suggest that TIP39 neurons in the PIL may regulate suckling-induced prolactin release in rat dams.

2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5716-5723 ◽  
Author(s):  
Petr Klement ◽  
Leslie R. Berry ◽  
Peng Liao ◽  
Henry Wood ◽  
Paul Tressel ◽  
...  

AbstractTranscranial Doppler-detected high-intensity transient signals (HITS) during cardiopulmonary bypass (CPB) surgery have been associated with postoperative neurocognitive dysfunction, suggesting microemboli in the brain could be a contributing factor. HITS occur despite administration of unfractionated heparin (UFH). This study was done to determine whether antithrombin-heparin covalent complex (ATH), a more potent anticoagulant than heparin, can reduce HITS during CPB. In a pig CPB model, ATH, UFH, or UFH + antithrombin (AT) was intravenously administered to female Yorkshire pigs after sternotomy. Twenty minutes later, hypothermic CPB was initiated and continued for 1.25 hours, then normothermia was re-established for 45 minutes. Protamine sulfate was given to neutralize the anticoagulants, and pigs were allowed to recover. HITS were monitored using an arterial flow probe placed over the carotid artery. Compared with UFH (300 or 1000 U/kg), ATH reduced the number of HITS during CPB in a dose-dependent manner. AT (3 mg/kg) + UFH (300 U/kg) resulted in an intermediate HITS rate between UFH and ATH (2 mg/kg in terms of AT). Examination of brain sections for emboli formation confirmed that, similar to HITS, number of thrombi decreased in direct proportion to ATH dosage. These results support the hypotheses that the majority of HITS represent thromboemboli and that ATH reduces emboli formation during CPB.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Zhang ◽  
Dengyuan Zhou ◽  
Qiuyan Li ◽  
Shuo Zhu ◽  
Muhammad Imran ◽  
...  

Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs. In the present study, the antiviral effect of steroidal dehydroepiandrosterone (DHEA) and 23 synthetic derivatives against flaviviruses such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), and Dengue virus (DENV) were appraised by examining the characteristics of virus infection both in vitro and in vivo. Our results revealed that AV1003, AV1004 and AV1017 were the most potent inhibitors of flavivirus propagation in cells. They mainly suppress the viral infection in the post-invasion stage in a dose-dependent manner. Furthermore, orally administered compound AV1004 protected mice from lethal JEV infection by increasing the survival rate and reducing the viral load in the brain of infected mice. These results indicate that the compound AV1004 might be a potential therapeutic drug against JEV infection. These DHEA derivatives may provide lead scaffolds for further design and synthesis of potential anti-flavivirus potential drugs.


Author(s):  
MAHESWARI REDDY B ◽  
DHANAPAL CK ◽  
LAKSHMI BVS

Objective: The current study evaluates anti-Parkinson’s activity of aqueous extracts of leaves of Murraya koenigii (MK) (AEMK) against paraquat (PQ)-induced Parkinsonism in rats. Methods: In this study, effects of MK (100, 200, and 400 mg/kg, p.o.) were studied using in vivo behavioral parameters such as catalepsy, muscle rigidity, and locomotor activity and its effects on neurochemical parameters malondialdehyde, catalase (CAT), glutathione (GSH) reductase, GSH peroxidase, and GSH in rats. Results: Parkinson’s disease was induced by administering PQ 10 mg/kg b.w/i.p once in a week for 4 weeks. The increased cataleptic scores were significantly (p<0.001) found to be reduced, with the AEMK in a dose-dependent manner. Chronic administration of PQ significantly induced motor dysfunction (muscle rigidity and hypolocomotion), showed a significant increase in lipid peroxidation level, and depleted the levels of GSH, CAT, and reduced GSH. Daily administration of AEMK significantly improved motor performance and also significantly attenuated oxidative damage. Conclusion: The study proved that MK treatment significantly attenuated motor defects and also protected the brain from oxidative stress.


2019 ◽  
Vol 20 (8) ◽  
pp. 1856 ◽  
Author(s):  
Shengming Sun ◽  
Ying Wu ◽  
Hongtuo Fu ◽  
Xianping Ge ◽  
Hongzheng You ◽  
...  

Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.


Parasitology ◽  
2000 ◽  
Vol 120 (6) ◽  
pp. 547-551 ◽  
Author(s):  
O. BILLKER ◽  
A. J. MILLER ◽  
R. E. SINDEN

Malarial gametocytes circulate in the peripheral blood of the vertebrate host as developmentally arrested intra-erythrocytic cells, which only resume development into gametes when ingested into the bloodmeal of the female mosquito vector. The ensuing development encompasses sexual reproduction and mediates parasite transmission to the insect. In vitro the induction of gametogenesis requires a drop in temperature and either a pH increase from physiological blood pH (ca pH 7·4) to about pH 8·0, or the presence of a gametocyte-activating factor recently identified as xanthurenic acid (XA). However, it is unclear whether either the pH increase or XA act as natural triggers in the mosquito bloodmeal. We here use pH-sensitive microelectrodes to determine bloodmeal pH in intact mosquitoes. Measurements taken in the first 30 min after ingestion, when malarial gametogenesis is induced in vivo, revealed small pH increases from 7·40 (mouse blood) to 7·52 in Aedes aegypti and to 7·58 in Anophěles stephensi. However, bloodmeal pH was clearly suboptimal if compared to values required to induce gametogenesis in vitro. Xanthurenic acid is shown to extend the pH-range of exflagellation in vitro in a dose-dependent manner to values that we have observed in the bloodmeal, suggesting that in vivo malarial gametogenesis could be further regulated by both these factors.


2014 ◽  
Vol 34 (1) ◽  
pp. 65-73 ◽  
Author(s):  
C Zhou ◽  
Y Zhang ◽  
S Yin ◽  
Z Jia ◽  
A Shan

The aim of the present research was to examine the toxic influence of different doses of zearalenone (ZEN) on the liver, especially oxidative stress induced by ZEN on the liver. A total of 48 pregnant Sprague-Dawley rats were randomly assigned into 4 treatments groups with 12 animals in each. The rats were fed with a normal diet treated with 0 mg/kg (control), 50 mg/kg (treatment 1), 100 mg/kg (treatment 2), or 150 mg/kg (treatment 3) ZEN in feed on gestation days (GDs) 0–7 and then all the rats were fed with a normal diet on GDs 8–20. The experimental period lasted 21 days. The results showed that exposure to ZEN induced increase in aspartate amino transferase, alanine aminotransferase, and alkaline phosphatase activities and decrease in total protein and albumin content in a dose-dependent manner and also induce decrease in superoxide dismutase and glutathione peroxidase activities and increase in malondialdehyde content in a dose-dependent manner in the serum and the liver. The increased transcription of cytochrome P450 2E1 (CYP2E1) was detected in the liver after exposure to ZEN. These results suggested that ZEN not only caused damage in the liver of pregnant rats in a dose-dependent manner but also induced the messenger RNA expression of CYP2E1 in the liver.


2016 ◽  
Vol 14 (3) ◽  
pp. 46-52 ◽  
Author(s):  
Petr D. Shabanov ◽  
Andrei A. Lebedev ◽  
Natalia D. Yakushina ◽  
Anna G. Pshenichnaya ◽  
Eugenii R. Bychkov

A rodent marble test can be qualified as the most informative test of evaluation of obsessive-compulsive disorder as a neurobiological component of pathological gambling. Several behavioral components of obsession (obsessive and anxious ideas) and compulsions (obsessive actions) directed to anxiety reduction are modeled in this test. The effect of psychostimulant amphetamine on the rat behavior was studied in a marble test, anxiety-phobic model (scale), open field (evaluation of motor and emotional activity) and resident-intruder test (Intraspecies behavior). Amphetamine 0.5 and 1.5 mg/kg increased a number of burying bolls and elevated anxiety level in dose dependent manner. This accompanied with reduction of explorative activity, elevation of motor activity and number of individual behavioral patterns. Therefore, dopaminergic system of the brain activated with amphetamine is involved in obsessive-compulsive behavior and pathological gambling.


1979 ◽  
Vol 57 (6) ◽  
pp. 595-599 ◽  
Author(s):  
P. D. Hrdina ◽  
K. Elson

The effect of tricyclic antidepressants, chlorpromazine, and some monoamine oxidase inhibitors on the accumulation of [14C]choline by crude synaptosomal (P2) fraction from different regions of rat brain (cortex, striatum, and hippocampus) was investigated. Analysis of choline uptake kinetics resulted in high- and low-affinity components with different Michaelis constants. All tricyclic antidepressants tested inhibited in a dose-dependent manner the high-affinity choline uptake in the three regions, amitriptyline being the most potent. The IC50 values correlated significantly with the relative potencies of imipramine congeners in binding to muscarinic receptors in the brain. Neither tranylcypromine nor pargyline in concentrations up to 0.1 mM had any effect on choline transport. Concentrations of tricyclic antidepressants effective in inhibiting the uptake of choline failed to influence significantly the activity of choline acetyltransferase in brain regions examined. The results suggest that the effect of imipramine congeners on high-affinity choline uptake may be reflected in the anticholinergic properties of these compounds.


Author(s):  
Bo Liang ◽  
Xudong Yuan ◽  
Gang Wei ◽  
Wei Wang ◽  
Ming Zhang ◽  
...  

AbstractTo curb the spread of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, we characterize the virucidal activity of long-acting Povidone Iodine (PVP-I) compositions developed using an in-situ gel forming technology. The PVP-I gel forming nasal spray (IVIEW-1503) and PVP-I gel forming ophthalmic eye drop (IVIEW-1201) rapidly inactivated SARS-CoV-2, inhibiting the viral infection of VERO76 cells. No toxicity was observed for the PVP-I formulations. Significant inactivation was noted with preincubation of the virus with these PVP-I formulations at the lowest concentrations tested. It has been demonstrated that both PVP-I formulations can inactivate SARS-CoV-2 virus efficiently in both a dose-dependent and a time-dependent manner. These results suggest IVIEW-1503 and IVIEW-1201 could be potential agents to reduce or prevent the transmission of the virus through the nasal cavity and the eye, respectively. Further studies are needed to clinically evaluate these formulations in early-stage COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document