scholarly journals An Optical Flow Based Left-Invariant Metric for Natural Gradient Descent in Affine Image Registration

Author(s):  
Daniel Jacob Tward

Accurate spatial alignment is essential for any population neuroimaging study, and affine (12 parameter linear/translation) or rigid (6 parameter rotation/translation) alignments play a major role. Here we consider intensity based alignment of neuroimages using gradient based optimization, which is a problem that continues to be important in many other areas of medical imaging and computer vision in general. A key challenge is robustness. Optimization often fails when transformations have components with different characteristic scales, such as linear versus translation parameters. Hand tuning or other scaling approaches have been used, but efficient automatic methods are essential for generalizing to new imaging modalities, to specimens of different sizes, and to big datasets where manual approaches are not feasible. To address this we develop a left invariant metric on these two matrix groups, based on the norm squared of optical flow induced on a template image. This metric is used in a natural gradient descent algorithm, where gradients (covectors) are converted to perturbations (vectors) by applying the inverse of the metric to define a search direction in which to update parameters. Using a publicly available magnetic resonance neuroimage database, we show that this approach outperforms several other gradient descent optimization strategies. Due to left invariance, our metric needs to only be computed once during optimization, and can therefore be implemented with negligible computation time.

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2510
Author(s):  
Nam D. Vo ◽  
Minsung Hong ◽  
Jason J. Jung

The previous recommendation system applied the matrix factorization collaborative filtering (MFCF) technique to only single domains. Due to data sparsity, this approach has a limitation in overcoming the cold-start problem. Thus, in this study, we focus on discovering latent features from domains to understand the relationships between domains (called domain coherence). This approach uses potential knowledge of the source domain to improve the quality of the target domain recommendation. In this paper, we consider applying MFCF to multiple domains. Mainly, by adopting the implicit stochastic gradient descent algorithm to optimize the objective function for prediction, multiple matrices from different domains are consolidated inside the cross-domain recommendation system (CDRS). Additionally, we design a conceptual framework for CDRS, which applies to different industrial scenarios for recommenders across domains. Moreover, an experiment is devised to validate the proposed method. By using a real-world dataset gathered from Amazon Food and MovieLens, experimental results show that the proposed method improves 15.2% and 19.7% in terms of computation time and MSE over other methods on a utility matrix. Notably, a much lower convergence value of the loss function has been obtained from the experiment. Furthermore, a critical analysis of the obtained results shows that there is a dynamic balance between prediction accuracy and computational complexity.


2021 ◽  
Author(s):  
Mohamad Mahdi Mohades ◽  
Mohammad Hossein Kahaei

<p>The max-cut problem addresses the problem of finding a cut for a graph that splits the graph into two subsets of vertices so that the number of edges between these two subsets is as large as possible. However, this problem is NP-Hard, which may be solved by suboptimal algorithms. In this paper, we propose a fast and accurate Riemannian optimization algorithm for solving the max-cut problem. To do so, we develop a gradient descent algorithm and prove its convergence. Our simulation results show that the proposed method is extremely efficient on some already-investigated graphs. Specifically, our method is on average 50 times faster than the best well-known techniques with slightly losing the performance, which is on average 0.9729 of the max-cut value of the others.</p> <p></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Heng Yin ◽  
Hengwei Zhang ◽  
Jindong Wang ◽  
Ruiyu Dou

Convolutional neural networks have outperformed humans in image recognition tasks, but they remain vulnerable to attacks from adversarial examples. Since these data are crafted by adding imperceptible noise to normal images, their existence poses potential security threats to deep learning systems. Sophisticated adversarial examples with strong attack performance can also be used as a tool to evaluate the robustness of a model. However, the success rate of adversarial attacks can be further improved in black-box environments. Therefore, this study combines a modified Adam gradient descent algorithm with the iterative gradient-based attack method. The proposed Adam iterative fast gradient method is then used to improve the transferability of adversarial examples. Extensive experiments on ImageNet showed that the proposed method offers a higher attack success rate than existing iterative methods. By extending our method, we achieved a state-of-the-art attack success rate of 95.0% on defense models.


2021 ◽  
Author(s):  
Mohamad Mahdi Mohades ◽  
Mohammad Hossein Kahaei

<p>The max-cut problem addresses the problem of finding a cut for a graph that splits the graph into two subsets of vertices so that the number of edges between these two subsets is as large as possible. However, this problem is NP-Hard, which may be solved by suboptimal algorithms. In this paper, we propose a fast and accurate Riemannian optimization algorithm for solving the max-cut problem. To do so, we develop a gradient descent algorithm and prove its convergence. Our simulation results show that the proposed method is extremely efficient on some already-investigated graphs. Specifically, our method is on average 50 times faster than the best well-known techniques with slightly losing the performance, which is on average 0.9729 of the max-cut value of the others.</p> <p></p>


Author(s):  
Marco Mele ◽  
Cosimo Magazzino ◽  
Nicolas Schneider ◽  
Floriana Nicolai

AbstractAlthough the literature on the relationship between economic growth and CO2 emissions is extensive, the use of machine learning (ML) tools remains seminal. In this paper, we assess this nexus for Italy using innovative algorithms, with yearly data for the 1960–2017 period. We develop three distinct models: the batch gradient descent (BGD), the stochastic gradient descent (SGD), and the multilayer perceptron (MLP). Despite the phase of low Italian economic growth, results reveal that CO2 emissions increased in the predicting model. Compared to the observed statistical data, the algorithm shows a correlation between low growth and higher CO2 increase, which contradicts the main strand of literature. Based on this outcome, adequate policy recommendations are provided.


Sign in / Sign up

Export Citation Format

Share Document