scholarly journals High Quality Aspergillus aculeatus Genomes and Transcriptomes: A Platform for Cellulase Activity Optimization Toward Industrial Applications

Author(s):  
Wuttichai Mhuantong ◽  
Salisa Charoensri ◽  
Aphisit Poonsrisawat ◽  
Wirulda Pootakham ◽  
Sithichoke Tangphatsornruang ◽  
...  
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingen Li ◽  
Shuying Gu ◽  
Zhen Zhao ◽  
Bingchen Chen ◽  
Qian Liu ◽  
...  

Abstract Background Lignocellulosic biomass has long been recognized as a potential sustainable source for industrial applications. The costs associated with conversion of plant biomass to fermentable sugar represent a significant barrier to the production of cost-competitive biochemicals. Consolidated bioprocessing (CBP) is considered a potential breakthrough for achieving cost-efficient production of biomass-based fuels and commodity chemicals. During the degradation of cellulose, cellobiose (major end-product of cellulase activity) is catabolized by hydrolytic and phosphorolytic pathways in cellulolytic organisms. However, the details of the two intracellular cellobiose metabolism pathways in cellulolytic fungi remain to be uncovered. Results Using the engineered malic acid production fungal strain JG207, we demonstrated that the hydrolytic pathway by β-glucosidase and the phosphorolytic pathway by phosphorylase are both used for intracellular cellobiose metabolism in Myceliophthora thermophila, and the yield of malic acid can benefit from the energy advantages of phosphorolytic cleavage. There were obvious differences in regulation of the two cellobiose catabolic pathways depending on whether M. thermophila JG207 was grown on cellobiose or Avicel. Disruption of Mtcpp in strain JG207 led to decreased production of malic acid under cellobiose conditions, while expression levels of all three intracellular β-glucosidase genes were significantly up-regulated to rescue the impairment of the phosphorolytic pathway under Avicel conditions. When the flux of the hydrolytic pathway was reduced, we found that β-glucosidase encoded by bgl1 was the dominant enzyme in the hydrolytic pathway and deletion of bgl1 resulted in significant enhancement of protein secretion but reduction of malate production. Combining comprehensive manipulation of both cellobiose utilization pathways and enhancement of cellobiose uptake by overexpression of a cellobiose transporter, the final strain JG412Δbgl2Δbgl3 produced up to 101.2 g/L and 77.4 g/L malic acid from cellobiose and Avicel, respectively, which corresponded to respective yields of 1.35 g/g and 1.03 g/g, representing significant improvement over the starting strain JG207. Conclusions This is the first report of detailed investigation of intracellular cellobiose catabolism in cellulolytic fungus M. thermophila. These results provide insights that can be applied to industrial fungi for production of biofuels and biochemicals from cellobiose and cellulose.


2020 ◽  
Vol 10 (3) ◽  
pp. 762
Author(s):  
Erinc Merdivan ◽  
Deepika Singh ◽  
Sten Hanke ◽  
Johannes Kropf ◽  
Andreas Holzinger ◽  
...  

Conversational agents are gaining huge popularity in industrial applications such as digital assistants, chatbots, and particularly systems for natural language understanding (NLU). However, a major drawback is the unavailability of a common metric to evaluate the replies against human judgement for conversational agents. In this paper, we develop a benchmark dataset with human annotations and diverse replies that can be used to develop such metric for conversational agents. The paper introduces a high-quality human annotated movie dialogue dataset, HUMOD, that is developed from the Cornell movie dialogues dataset. This new dataset comprises 28,500 human responses from 9500 multi-turn dialogue history-reply pairs. Human responses include: (i) ratings of the dialogue reply in relevance to the dialogue history; and (ii) unique dialogue replies for each dialogue history from the users. Such unique dialogue replies enable researchers in evaluating their models against six unique human responses for each given history. Detailed analysis on how dialogues are structured and human perception on dialogue score in comparison with existing models are also presented.


2020 ◽  
Author(s):  
Honghai Zhang ◽  
Yuan Wang ◽  
Roman Brunecky ◽  
Bin Yao ◽  
Xiangming Xie ◽  
...  

Abstract Background Swollenins are present in some fungal species involved in the biodegradation of cellulosic substrates. They appear to promote a rearrangement in the network of non-covalent interactions between the cell wall polysaccharides, thus making it more accessible for degradation by hydrolytic enzymes. Here, we have reported a detailed characterization of a recombinant swollenin with respect to its disruptive activity on cellulosic substrates and synergistic effect with cellulases. Results In the present study, a novel swollenin gene Tlswo consisting of an open reading frame encoding 503 amino acids was identified from Talaromyces leycettanus JCM12802 and successfully expressed in Trichoderma reesei and Pichia pastoris. Similar to other fungal swollenins, TlSWO contained a N-terminal family 1 carbohydrate binding module (CBM1) followed by a Ser/Thr rich linker connected to expansin-like domain which includes a family 45 endoglucanase-like domain and group-2 grass pollen allergen domain. TlSWO demonstrated disruptive activity on Avicel and displayed a high synergistic effect with cellobiohydrolases, enhancing its hydrolytic performance up to 132%. The activity of TlSWO on various substrates and biomass was also examined. It was shown that TlSWO could release reducing sugars from lichenan, barley β-glucan, carboxymethyl cellulose sodium (CMC-Na) and laminarin. The specific activity of TlSWO towards the substates above is 9.0 ± 0.100 U/mg, 8.9 ± 0.100U/mg, 2.3 ± 0.002 U/mg and 0.79 ± 0.002 U/mg respectively. Moreover, TlSWO exhibits maximum activity at pH 4.0 and 50 ℃. Conclusion This study reported on a novel swollenin with highly efficient for biomass conversion. It also reveals the functional diversity of swollenin with activity on various substrates. Although the exact mechanism of swollenin catalytic action activity still remains unknown, the functional diversity of TlSWO makes it a good candidate for industrial applications.


Author(s):  
Jan Jurjens ◽  
Pasha Shabalin

High-quality development of critical systems poses serious challenges. Formal methods have been proposed to address them, but their use in industry is not as widespread as originally hoped. This chapter proposes to use the Unified Modeling Language (UML), the de-facto industry standard specification language, as a notation together with a formally based tool-support for critical systems development. The authors extend the UML notation with new constructs for describing criticality requirements and relevant system properties, and introduce their formalization in the context of the UML executable semantics. Furthermore tool-support concepts for this approach are presented, which facilitate transfer of the methodology to industrial applications.


2021 ◽  
Vol 118 (18) ◽  
pp. e2100663118
Author(s):  
Loic Constantin ◽  
Lisha Fan ◽  
Mathilde Pouey ◽  
Jérôme Roger ◽  
Bai Cui ◽  
...  

Refractory materials hold great promise to develop functional multilayer coating for extreme environments and temperature applications but require high temperature and complex synthesis to overcome their strong atomic bonding and form a multilayer structure. Here, a spontaneous reaction producing sophisticated multilayer refractory carbide coatings on carbon fiber (CF) is reported. This approach utilizes a relatively low-temperature (950 °C) molten-salt process for forming refractory carbides. The reaction of titanium (Ti), chromium (Cr), and CF yields a complex, high-quality multilayer carbide coating composed of 1) Cr carbide (Cr3C2), 2) Ti carbide, and 3) Cr3C2 layers. The layered sequence arises from a difference in metal dissolutions, reactions, and diffusion rates in the salt media. The multilayer-coated CFs act as a permeable oxidation barrier with no crystalline degradation of the CFs after extreme temperature (1,200 °C) and environment (oxyacetylene flame) exposure. The synthesis of high-quality multilayer refractory coating in a fast, efficient, easy, and clean manner may answer the need for industrial applications that develop cheap and reliable extreme environment protection barriers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Simon Drieschner ◽  
Fabian Kloiber ◽  
Marc Hennemeyer ◽  
Jan J. Klein ◽  
Manuel W. Thesen

Abstract Augmented reality (AR) enhancing the existing natural environment by overlaying a virtual world is an emerging and growing market and attracts huge commercial interest into optical devices which can be implemented into head-mounted AR equipment. Diffractive optical elements (DOEs) are considered as the most promising candidate to meet the market’s requirements such as compactness, low-cost, and reliability. Hence, they allow building alternatives to large display headsets for virtual reality (VR) by lightweight glasses. Soft lithography replication offers a pathway to the fabrication of large area DOEs with high aspect ratios, multilevel features, and critical dimensions below the diffractive optical limit down to 50 nm also in the scope of mass manufacturing. In combination with tailored UV-curable photopolymers, the fabrication time can be drastically reduced making it very appealing to industrial applications. Here, we illustrate the key features of high efficiency DOEs and how the SMILE (SUSS MicroTec Imprint Lithography Equipment) technique can be used with advanced imprint photopolymers to obtain high quality binary DOEs meeting the market’s requirements providing a very versatile tool to imprint both nano- and microstructures.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-22
Author(s):  
Di Jiang ◽  
Yongxin Tong ◽  
Yuanfeng Song ◽  
Xueyang Wu ◽  
Weiwei Zhao ◽  
...  

Probabilistic topic modeling has been applied in a variety of industrial applications. Training a high-quality model usually requires a massive amount of data to provide comprehensive co-occurrence information for the model to learn. However, industrial data such as medical or financial records are often proprietary or sensitive, which precludes uploading to data centers. Hence, training topic models in industrial scenarios using conventional approaches faces a dilemma: A party (i.e., a company or institute) has to either tolerate data scarcity or sacrifice data privacy. In this article, we propose a framework named Industrial Federated Topic Modeling (iFTM), in which multiple parties collaboratively train a high-quality topic model by simultaneously alleviating data scarcity and maintaining immunity to privacy adversaries. iFTM is inspired by federated learning, supports two representative topic models (i.e., Latent Dirichlet Allocation and SentenceLDA) in industrial applications, and consists of novel techniques such as private Metropolis-Hastings, topic-wise normalization, and heterogeneous model integration. We conduct quantitative evaluations to verify the effectiveness of iFTM and deploy iFTM in two real-life applications to demonstrate its utility. Experimental results verify iFTM’s superiority over conventional topic modeling.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6974-6988
Author(s):  
Rui-Ping Xi ◽  
Ye-Qiang Qi ◽  
Bi-Xian Zhang ◽  
Xin-Miao He ◽  
He-Shu Chen ◽  
...  

Ionic liquids (ILs) are effective solvents for lignocellulose pretreatment. Enzymatic saccharification converts pretreated lignocelluloses into valuable products, and IL-tolerant cellulase improves the enzymatic efficiency and the reuse of ILs. In this study, a fungal strain with a relatively high cellulase production was isolated and identified as Aspergillus aculeatus G1-3. The high production of β-glucosidase (1.943 U per mL), CMCase (1.303 U per mL), and FPase (0.165 U per mL) was obtained using corn stover as the carbon source and peptone as the nitrogen source. The results were obtained at pH 8.0 and 30 °C with an inoculation size of 3% (volume per volume) for 7 days. A mutant strain Aspergillus aculeatus P6 with β-glucosidase (7.023 U per mL), CMCase (1.543 U per mL), and FPase (0.098 U per mL) was obtained by 60Co-γ irradiation. The cellulase activity was measured at pH 5.0 and 60 °C for enzymatic hydrolysis. The cellulase from mutant strains was stable in different concentrations of 1-ethyl-3-methylimidazolium acetate. Enzymatic saccharification of the original corn stover and ILs-pretreated corn stover was successfully performed with high sugar yields. The mutant strains of Aspergillus aculeatus have great potential for their further application in the conversion of lignocellulosic biomass into biofuels.


2020 ◽  
Vol 861 ◽  
pp. 95-100
Author(s):  
Son Minh Pham ◽  
Van Vinh Hoang ◽  
Minh Tai Le

Single point incremental forming is a major process in a number of different industrial applications. Blank are easily found around us from furniture and household equipment to industrial machinery and equipment. To ensure high-quality sheet metal, it is vital to consider the influence of parameters. Accordingly, in this paper, the parameters affecting product quality are analyzed. Through the testing process, we obtain the parameters that help the product achieve high quality in terms of mechanics, which is an important first step for the process of developing the technology.


Author(s):  
Xiaoying Zhang ◽  
Brindha Chelliappan ◽  
Rajeswari S ◽  
Michael Antonysamy

Egg, a highly nutritious food, contains high-quality proteins, vitamins, and minerals. This food has been reported for its potential pharmacological properties, including antibacterial, anti-cancer, anti-inflammatory, angiotensin-converting enzyme (ACE) inhibition, immunomodulatory effects, and use in tissue engineering applications. The significance of eggs and their components in disease prevention and treatment is worth more attention. Eggs not only have been known as a “functional food” to combat diseases and facilitate the promotion of optimal health, but also have numerous industrial applications. The current review focuses on different perceptions and non-food applications of eggs, including cosmetics. The versatility of eggs from an industrial perspective makes them a potential candidate for further exploration of several novel components.


Sign in / Sign up

Export Citation Format

Share Document