scholarly journals FLRTing Neurons in Cortical Migration During Cerebral Cortex Development

Author(s):  
Claudia Peregrina ◽  
Daniel del Toro
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Fabrice Chatonnet ◽  
Frédéric Picou ◽  
Teddy Fauquier ◽  
Frédéric Flamant

Thyroid hormones (TH, including the prohormone thyroxine (T4) and its active deiodinated derivative 3,,5-triiodo-L-thyronine (T3)) are important regulators of vertebrates neurodevelopment. Specific transporters and deiodinases are required to ensure T3 access to the developing brain. T3 activates a number of differentiation processes in neuronal and glial cell types by binding to nuclear receptors, acting directly on transcription. Only few T3 target genes are currently known. Deeper investigations are urgently needed, considering that some chemicals present in food are believed to interfere with T3 signaling with putative neurotoxic consequences.


2020 ◽  
Author(s):  
Ziheng Zhou ◽  
Shuguang Wang ◽  
Dengwei Zhang ◽  
Xiaosen Jiang ◽  
Jie Li ◽  
...  

AbstractBackgroundThe specification and differentiation of neocortical projection neurons is a complex process under precise molecular regulation; however, little is known about the similarities and differences in cerebral cortex development between human and mouse at single-cell resolution.ResultsHere, using single-cell RNA-seq (scRNA-seq) data we explore the divergence and conservation of human and mouse cerebral cortex development using 18,446 and 7,610 neocortical cells. Systematic cross-species comparison reveals that the overall transcriptome profile in human cerebral cortex is similar to that in mouse such as cell types and their markers genes. By single-cell trajectories analysis we find human and mouse excitatory neurons have different developmental trajectories of neocortical projection neurons, ligand-receptor interactions and gene expression patterns. Further analysis reveals a refinement of neuron differentiation that occurred in human but not in mouse, suggesting that excitatory neurons in human undergo refined transcriptional states in later development stage. By contrast, for glial cells and inhibitory neurons we detected conserved developmental trajectories in human and mouse.ConclusionsTaken together, our study integrates scRNA-seq data of cerebral cortex development in human and mouse, and uncovers distinct developing models in neocortical projection neurons. The earlier activation of cognition -related genes in human may explain the differences in behavior, learning or memory abilities between the two species.


2017 ◽  
Vol 232 (2) ◽  
pp. R83-R97 ◽  
Author(s):  
Juan Bernal

The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.


2013 ◽  
Author(s):  
Yaping Wang ◽  
Gang Li ◽  
Mihye Ahn ◽  
Jingxin Nie ◽  
Hongtu Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document