scholarly journals Lysosomes and Cancer Progression: A Malignant Liaison

Author(s):  
Eda R. Machado ◽  
Ida Annunziata ◽  
Diantha van de Vlekkert ◽  
Gerard C. Grosveld ◽  
Alessandra d’Azzo

During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.

Author(s):  
Aurora Gil-Hernández ◽  
Miguel Arroyo-Campuzano ◽  
Arturo Simoni-Nieves ◽  
Cecilia Zazueta ◽  
Luis Enrique Gomez-Quiroz ◽  
...  

Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.


2019 ◽  
Author(s):  
Leila Rochin ◽  
Cécile Sauvanet ◽  
Eeva Jääskeläinen ◽  
Audrey Houcine ◽  
Amita Arora ◽  
...  

SUMMARYMitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the two mitochondrial membranes. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at sites of close organelle apposition called membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that ORP5/8 mediate non-vesicular transport of Phosphatidylserine (PS) from the ER to mitochondria in mammalian cells. We also show that ER-mitochondria contacts where ORP5/8 reside are physically and functionally linked to the MIB/MICOS complexes that bridge the mitochondrial membranes, cooperating with them to facilitate PS transfer from the ER to the mitochondria. Finally, we show that ORP5 but not ORP8, additionally regulates import of calcium to mitochondria and consequently cell senescence.


2020 ◽  
Author(s):  
Ameair Abu Irqeba ◽  
Judith Mosinger Ogilvie

ABSTRACTPrenylated Rab Acceptor 1 (PRA1/Rabac1) is a four-pass transmembrane protein that has been found to localize to the Golgi and promiscuously associate with a diverse array of Rab GTPases. We have previously identified PRA1 to be among the earliest significantly down-regulated genes in the rd1 mouse model of retinitis pigmentosa, a retinal degenerative disease. Here, we show that an endogenous subpopulation of PRA1 resides within the endoplasmic reticulum (ER) at ER-mitochondria membrane contact sites in cultured mammalian cells. We also demonstrate that PRA1 contains two previously unidentified ER retention/retrieval amino acid sequences on its cytosolic N-terminal region: a membrane distal di-arginine motif and a novel membrane proximal FFAT-like motif. Using a truncation construct that lacks complete Golgi targeting information, we show that mutation of either motif leads to an increase in cell surface localization, while mutation of both motifs exhibits an additive effect. We also present evidence that illustrates that N- or C- terminal addition of a tag to full-length PRA1 leads to differential localization to either the Golgi or reticular ER, phenotypes that do not completely mirror endogenous protein localization. The presence of multiple ER retention motifs on the PRA1 N-terminal region further suggests that it has a functional role within the ER.


2015 ◽  
Vol 8s1 ◽  
pp. LPI.S31726 ◽  
Author(s):  
Vesa M. Olkkonen

Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.


2016 ◽  
Vol 473 (23) ◽  
pp. 4289-4310 ◽  
Author(s):  
Shamshad Cockcroft ◽  
Padinjat Raghu

Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2. Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.


2018 ◽  
Vol 59 (6) ◽  
pp. 923-944 ◽  
Author(s):  
Jean E. Vance

This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641877051 ◽  
Author(s):  
Alexander R. van Vliet ◽  
Maria Livia Sassano ◽  
Patrizia Agostinis

The endoplasmic reticulum (ER) is the most extensive organelle of the eukaryotic cell and constitutes the major site of protein and lipid synthesis and regulation of intracellular Ca2+ levels. To exert these functions properly, the ER network is shaped in structurally and functionally distinct domains that dynamically remodel in response to intrinsic and extrinsic cues. Moreover, the ER establishes a tight communication with virtually all organelles of the cell through specific subdomains called membrane contact sites. These contact sites allow preferential, nonvesicular channeling of key biological mediators including lipids and Ca2+ between organelles and are harnessed by the ER to interface with and coregulate a variety of organellar functions that are vital to maintain homeostasis. When ER homeostasis is lost, a condition that triggers the activation of an evolutionarily conserved pathway called the unfolded protein response (UPR), the ER undergoes rapid remodeling. These dynamic changes in ER morphology are functionally coupled to the modulation or formation of contact sites with key organelles, such as mitochondria and the plasma membrane, which critically regulate cell fate decisions of the ER-stressed cells. Certain components of the UPR have been shown to facilitate the formation of contact sites through various mechanisms including remodeling of the actin cytoskeleton. In this review, we discuss old and emerging evidence linking the UPR machinery to contact site formation in mammalian cells and discuss their important role in cellular homeostasis.


2018 ◽  
Vol 46 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
Louise H. Wong ◽  
Emily R. Eden ◽  
Clare E. Futter

Multivesicular endosomes/bodies (MVBs) sort membrane proteins between recycling and degradative pathways. Segregation of membrane proteins onto intraluminal vesicles (ILVs) of MVBs removes them from the recycling pathway and facilitates their degradation following fusion of MVBs with lysosomes. Sorting of many cargos onto ILVs depends on the ESCRT (Endosomal Sorting Complex Required for Transport) machinery, although ESCRT-independent mechanisms also exist. In mammalian cells, efficient sorting of ligand-stimulated epidermal growth factor receptors onto ILVs also depends on the tyrosine phosphatase, PTP1B, an ER-localised enzyme that interacts with endosomal targets at membrane contacts between MVBs and the ER. This review focuses on the potential roles played by ER:MVB membrane contact sites in regulating ESCRT-dependent ILV formation.


Pathogens ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 33 ◽  
Author(s):  
Srinivasan Ramakrishnan ◽  
Beejan Asady ◽  
Roberto Docampo

Membrane contact sites are regions of close apposition between two organelles, typically less than 30 nanometers apart, that facilitate transfer of biomolecules. The presence of contact sites has been demonstrated in yeast, plants, and mammalian cells. Here, we investigated the presence of such contact sites in Trypanosoma brucei. In mammalian cells, endoplasmic reticulum-mitochondria contact sites facilitate mitochondrial uptake of Ca2+ released by the ER-located inositol 1,4,5-trisphosphate receptor (InsP3R). However, the InsP3R in trypanosomes localizes to acidocalcisomes, which serve as major Ca2+ stores in these parasites. In this work, we have used super-resolution structured illumination microscopy and electron microscopy to identify membrane contact sites that exist between acidocalcisomes and mitochondria. Furthermore, we have confirmed the close association of these organelles using proximity ligation assays. Characterization of these contact sites may be a necessary starting point towards unraveling the role of Ca2+ in regulating trypanosome bioenergetics.


Sign in / Sign up

Export Citation Format

Share Document