scholarly journals RNA m6A Modification Plays a Key Role in Maintaining Stem Cell Function in Normal and Malignant Hematopoiesis

Author(s):  
Peipei Wang ◽  
Mengdie Feng ◽  
Guoqiang Han ◽  
Rong Yin ◽  
Yashu Li ◽  
...  

N6-methyladenosine (m6A) is a commonly modification of mammalian mRNAs and plays key roles in various cellular processes. Emerging evidence reveals the importance of RNA m6A modification in maintaining stem cell function in normal hematopoiesis and leukemogenesis. In this review, we first briefly summarize the latest advances in RNA m6A biology, and further highlight the roles of m6A writers, readers and erasers in normal hematopoiesis and acute myeloid leukemia. Moreover, we also discuss the mechanisms of these m6A modifiers in preserving the function of hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs), as well as potential strategies for targeting m6A modification related pathways. Overall, we provide a comprehensive summary and our insights into the field of RNA m6A in normal hematopoiesis and leukemia pathogenesis.

2020 ◽  
Author(s):  
Jonason Yang ◽  
Nunki Hassan ◽  
Sheng Xiang Franklin Chen ◽  
Jayvee Datuin ◽  
Jenny Y. Wang

Acute myeloid leukemia (AML) is a difficult-to-treat blood cancer. A major challenge in treating patients with AML is relapse, which is caused by the persistence of leukemia stem cells (LSCs). Self-renewal is a defining property of LSCs and its deregulation is crucial for re-initiating a new leukemia after chemotherapy. Emerging therapeutic agents inhibiting aberrant self-renewal pathways, such as anti-RSPO3 monoclonal antibody discovered in our recent study, present significant clinical potential that may extend beyond the scope of leukemogenesis. In this chapter, we provide an overview of normal and malignant hematopoietic stem cells, discuss current treatments and limitations, and review key self-renewal pathways and potential therapeutic opportunities in AML.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6304-6314 ◽  
Author(s):  
Shunya Arai ◽  
Akihide Yoshimi ◽  
Munetake Shimabe ◽  
Motoshi Ichikawa ◽  
Masahiro Nakagawa ◽  
...  

Abstract Ecotropic viral integration site-1 (Evi-1) is a nuclear transcription factor that plays an essential role in the regulation of hematopoietic stem cells. Aberrant expression of Evi-1 has been reported in up to 10% of patients with acute myeloid leukemia and is a diagnostic marker that predicts a poor outcome. Although chromosomal rearrangement involving the Evi-1 gene is one of the major causes of Evi-1 activation, overexpression of Evi-1 is detected in a subgroup of acute myeloid leukemia patients without any chromosomal abnormalities, which indicates the presence of other mechanisms for Evi-1 activation. In this study, we found that Evi-1 is frequently up-regulated in bone marrow cells transformed by the mixed-lineage leukemia (MLL) chimeric genes MLL-ENL or MLL-AF9. Analysis of the Evi-1 gene promoter region revealed that MLL-ENL activates transcription of Evi-1. MLL-ENL–mediated up-regulation of Evi-1 occurs exclusively in the undifferentiated hematopoietic population, in which Evi-1 particularly contributes to the propagation of MLL-ENL–immortalized cells. Furthermore, gene-expression analysis of human acute myeloid leukemia cases demonstrated the stem cell–like gene-expression signature of MLL-rearranged leukemia with high levels of Evi-1. Our findings indicate that Evi-1 is one of the targets of MLL oncoproteins and is selectively activated in hematopoietic stem cell–derived MLL leukemic cells.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 683-683
Author(s):  
Christopher Y. Park ◽  
Yoon-Chi Han ◽  
Govind Bhagat ◽  
Jian-Bing Fan ◽  
Irving L Weissman ◽  
...  

Abstract microRNAs (miRNAs) are short, non-protein encoding RNAs that bind to the 3′UTR’s of target mRNAs and negatively regulate gene expression by facilitating mRNA degradation or translational inhibition. Aberrant miRNA expression is well-documented in both solid and hematopoietic malignancies, and a number of recent miRNA profiling studies have identified miRNAs associated with specific human acute myeloid leukemia (AML) cytogenetic groups as well as miRNAs that may prognosticate clinical outcomes in AML patients. Unfortunately, these studies do not directly address the functional role of miRNAs in AML. In fact, there is no direct functional evidence that miRNAs are required for AML development or maintenance. Herein, we report on our recent efforts to elucidate the role of miRNAs in AML stem cells. miRNA expression profiling of AML stem cells and their normal counterparts, hematopoietic stem cells (HSC) and committed progenitors, reveals that miR-29a is highly expressed in human hematopoietic stem cells (HSC) and human AML relative to normal committed progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors is sufficient to induce a myeloproliferative disorder (MPD) that progresses to AML. During the MPD phase of the disease, miR-29a alters the composition of committed myeloid progenitors, significantly expedites cell cycle progression, and promotes proliferation of hematopoietic progenitors at the level of the multipotent progenitor (MPP). These changes are manifested pathologically by marked granulocytic and megakaryocytic hyperplasia with hepatosplenomegaly. Mice with miR-29a-induced MPD uniformly progress to an AML that contains a leukemia stem cell (LSC) population that can serially transplant disease with as few as 20 purified LSC. Gene expression analysis reveals multiple tumor suppressors and cell cycle regulators downregulated in miR-29a expressing cells compared to wild type. We have demonstrated that one of these genes, Hbp1, is a bona fide miR-29a target, but knockdown of Hbp1 in vivo does not recapitulate the miR-29a phenotype. These data indicate that additional genes are required for miR-29a’s leukemogenic activity. In summary, our data demonstrate that miR-29a regulates early events in normal hematopoiesis and promotes myeloid differentiation and expansion. Moreover, they establish that misexpression of a single miRNA is sufficient to drive leukemogenesis, suggesting that therapeutic targeting of miRNAs may be an effective means of treating myeloid leukemias.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 559-559
Author(s):  
Toshihiro Miyamoto ◽  
Yoshikane Kikushige ◽  
Takahiro Shima ◽  
Koichi Akashi

Abstract Abstract 559 Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for permanent cure. To selectively kill AML LSCs sparing normal hematopoietic stem cells (HSCs), one of the most practical approaches is to target the AML LSCs-specific surface or functionally indispensable molecules. Based on differential transcriptome analysis of prospectively-purified CD34+CD38− LSCs from AML patient samples and normal HSCs, we found that T-cell immunoglobulin mucin-3 (TIM-3) was highly expressed in AML LSCs but not in normal HSCs (Kikushige et al., Cell Stem Cell, 2010). In normal hematopoiesis, TIM-3 is mainly expressed in mature monocytes and a fraction of NK cells, but not in granulocytes, T cells or B cells. In the bone marrow, TIM-3 is expressed only in a fraction of granulocyte/macrophage progenitors (GMPs) at a low level, but not in HSCs, common myeloid progenitors, or megakaryocyte/erythrocyte progenitors. In contrast, in human AML, TIM-3 was expressed on cell surface of the vast majority of CD34+CD38− LSCs and CD34+CD38+ leukemic progenitors in AML of most FAB types, except for acute promyelocytic leukemia (M3). FACS-sorted TIM-3+ but not TIM-3− AML cells reconstituted human AML in the immunodeficient mice, indicating that the TIM-3+ population contains most of functional LSCs. To selectively eradicate TIM-3-expressing AML LSCs, we established an anti-human TIM-3 mouse IgG2a antibody, ATIK2a, possessing antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities in leukemia cell lines transfected with TIM-3. We first tested the effect of ATIK2a treatment on reconstitution of normal HSCs in a xenograft model. ATIK2a was intraperitoneally injected to the mice once a week after 12 hours of transplantation of human CD34+ cells. Injection of ATIK2a did not affect reconstitution of normal human hematopoiesis except removing TIM-3-expressing mature monocytes. In contrast, injection of TIM-3 to the mice transplanted with human AML samples markedly reduced leukemic repopulation. In some mice transplanted with AML bone marrow, only normal hematopoiesis was reconstituted after anti-TIM-3 antibody treatment, suggesting that the antibody selectively killed AML cells, sparing residual normal HSCs. To further test the inhibitory effect of ATIK2a on established human AML, eight weeks after transplantation of human AML cells, engraftment of human AML cells was confirmed by blood sampling and thereafter ATIK2a was injected to these mice. In all cases tested, ATIK2a treatment significantly reduced human TIM-3+ AML fraction as well as the CD34+CD38− LSCs fraction. In addition, to verify the anti-AML LSCs effect of ATIK2a treatment, human CD45+AML cells from the primary recipients were re-transplanted into secondary recipients. All mice transplanted from primary recipients treated with control IgG developed AML, whereas none of mice transplanted with cells from ATIK2a-treated primary recipients developed AML, suggesting that functional LSCs were effectively eliminated by ATIK2a treatment in primary recipients. Thus, TIM-3 is a promising surface molecule to target AML LSCs. Our experiments strongly suggest that targeting this molecule by monoclonal antibody treatment is a practical approach to eradicate human AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document