scholarly journals Gestational Diabetes Mellitus-Associated Hyperglycemia Impairs Glucose Transporter 3 Trafficking in Trophoblasts Through the Downregulation of AMP-Activated Protein Kinase

Author(s):  
Li Zhang ◽  
Xinyang Yu ◽  
Yue Wu ◽  
Huijia Fu ◽  
Ping Xu ◽  
...  

AMP-activated protein kinase (AMPK) is an important regulator of glucose metabolism, and glucose transporter 3 (GLUT3) is an efficient glucose transporter in trophoblasts. Whether placental AMPK and GLUT3 respond accordingly to gestational diabetes mellitus (GDM) remains uncertain. Here, we explored the regulatory role of AMPK in the GLUT3-dependent uptake of glucose by placental trophoblasts and the viability of the cells. In this study, the level of glycolysis in normal and GDM-complicated placentas was assessed by LC-MS/MS. The trophoblast hyperglycemia model was induced by the incubation of HTR8/SVneo cells with a high glucose concentration. GDM animal models were generated with db/ + mice and C57BL/6J mice fed a high-fat diet, and AMPK was manipulated by the oral administration of metformin. The uptake of glucose by trophoblasts was assessed using 2-NBDG or 2-deoxy-D-[3H] glucose. The results showed that GDM is associated with impaired glycolysis, AMPK activity, GLUT3 expression in the plasma membrane (PM) and cell survival in the placenta. Hyperglycemia induced similar changes in trophoblasts, and these changes were rescued by AMPK activation. Both hyperglycemic db/ + and high-fat diet-induced GDM mice exhibited a compromised AMPK–GLUT3 axis and suppressed cell viability in the placenta as well as excessive fetal growth, and all of these effects were partially alleviated by metformin. Taken together, our findings support the notion that AMPK activation upregulates trophoblast glucose uptake by stimulating GLUT3 translocation, which is beneficial for viability. Thus, the modulation of glucose metabolism in trophoblasts by targeting AMPK might ameliorate the adverse intrauterine environment caused by GDM.

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3338
Author(s):  
Hyeon A Lee ◽  
Jae-Han Cho ◽  
Qonita Afinanisa ◽  
Gi-Hong An ◽  
Jae-Gu Han ◽  
...  

Ganoderma lucidum is used widely in oriental medicine to treat obesity and metabolic diseases. Bioactive substances extracted from G. lucidum have been shown to ameliorate dyslipidemia, insulin resistance, and type 2 diabetes in mice via multiple 5′ AMP-activated protein kinase (AMPK)-mediated mechanisms; however, further studies are required to elucidate the anti-obesity effects of G. lucidum in vivo. In this study, we demonstrated that 3% G. lucidum extract powder (GEP) can be used to prevent obesity and insulin resistance in a mouse model. C57BL/6 mice were provided with a normal diet (ND) or a high-fat diet (HFD) supplemented with 1, 3, or 5% GEP for 12 weeks and the effect of GEP on body weight, liver, adipose tissue, adipokines, insulin and glucose tolerance (ITT and GTT), glucose uptake, glucose-metabolism related proteins, and lipogenesis related genes was examined. GEP administration was found to reduce weight gain in the liver and fat tissues of the mice. In addition, serum parameters were significantly lower in the 3% and 5% GEP mice groups than in those fed a HFD alone, whereas adiponectin levels were significantly higher. We also observed that GEP improved glucose metabolism, reduced lipid accumulation in the liver, and reduced adipocyte size. These effects may have been mediated by enhanced AMPK activation, which attenuated the transcription and translation of lipogenic genes such as fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), and sterol regulatory element-binding protein-1c (SREBP1c). Moreover, AMP-activated protein kinase (AMPK) activation increased acetyl-CoA carboxylase (ACC), insulin receptor (IR), IR substrate 1 (IRS1), and Akt protein expression and activation, as well as glucose transporter type 1/4 (GLUT1/4) protein production, thereby improving insulin sensitivity and glucose metabolism. Together, these findings demonstrate that G. lucidum may effectively prevent obesity and suppress obesity-induced insulin resistance via AMPK activation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura K. Cole ◽  
Genevieve C. Sparagna ◽  
Marilyne Vandel ◽  
Bo Xiang ◽  
Vernon W. Dolinsky ◽  
...  

AbstractBerberine (BBR) is an isoquinoline alkaloid from plants known to improve cardiac mitochondrial function in gestational diabetes mellitus (GDM) offspring but the mechanism is poorly understood. We examined the role of the mitochondrial phospholipid cardiolipin (CL) in mediating this cardiac improvement. C57BL/6 female mice were fed either a Lean-inducing low-fat diet or a GDM-inducing high-fat diet for 6 weeks prior to breeding. Lean and GDM-exposed male offspring were randomly assigned a low-fat, high-fat, or high-fat diet containing BBR at weaning for 12 weeks. The content of CL was elevated in the heart of GDM offspring fed a high fat diet containing BBR. The increase in total cardiac CL was due to significant increases in the most abundant and functionally important CL species, tetralinoleoyl-CL and this correlated with an increase in the expression of the CL remodeling enzyme tafazzin. Additionally, BBR treatment increased expression of cardiac enzymes involved in fatty acid uptake and oxidation and electron transport chain subunits in high fat diet fed GDM offspring. Thus, dietary BBR protection from cardiac dysfunction in GDM exposed offspring involves improvement in mitochondrial function mediated through increased synthesis of CL.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Caiping Lu ◽  
Hanying Xing ◽  
Linquan Yang ◽  
Kaiting Chen ◽  
Linyi Shu ◽  
...  

Diabetes mellitus is highly prevalent worldwide. High-fat-diet (HFD) consumption can lead to liver fat accumulation, impair hepatic glycometabolism, and cause insulin resistance and the development of diabetes. Resveratrol has been shown to improve the blood glucose concentration of diabetic mice, but its effect on the abnormal hepatic glycometabolism induced by HFD-feeding and the mechanism involved are unknown. In this study, we determined the effects of resveratrol on the insulin resistance of high-fat-diet-fed mice and a hepatocyte model by measuring serum biochemical indexes, key indicators of glycometabolism, glucose uptake, and glycogen synthesis in hepatocytes. We found that resveratrol treatment significantly ameliorated the HFD-induced abnormalities in glucose metabolism in mice, increased glucose absorption and glycogen synthesis, downregulated protein phosphatase 2A (PP2A) and activated Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ), and increased the phosphorylation of AMP-activated protein kinase (AMPK). In insulin-resistant HepG2 cells, the administration of a PP2A activator or CaMKKβ inhibitor attenuated the effects of resveratrol, but the administration of an AMPK inhibitor abolished the effects of resveratrol. Resveratrol significantly ameliorates abnormalities in glycometabolism induced by HFD-feeding and increases glucose uptake and glycogen synthesis in hepatocytes. These effects are mediated through the activation of AMPK by PP2A and CaMKKβ.


2018 ◽  
Vol 50 (6) ◽  
pp. 2260-2271 ◽  
Author(s):  
Chen Huang ◽  
Bin-bin Huang ◽  
Jian-min Niu ◽  
Yan Yu ◽  
Xiao-yun Qin ◽  
...  

Background/Aims: Gestational diabetes mellitus (GDM) is a common complication of pregnancy, but the mechanisms underlying the disorders remain unclear. The study aimed to identify mRNA and long non-coding RNA (lncRNA) profiles in placenta and gonadal fat of pregnant mice fed a high-fat diet and to investigate the transcripts and pathways involved in the development of gestational diabetes mellitus. Methods: Deep and broad transcriptome profiling was performed to assess the expression of mRNAs and lncRNAs in placenta and gonadal fat from 3 mice fed an HFD and chow during pregnancy. Then, differentially expressed mRNAs and lncRNAs were validated by quantitative real-time PCR. The function of the differentially expressed mRNAs was determined by pathway and Gene Ontology (GO) analyses, and the physical or functional relationships between the lncRNAs and the corresponding mRNAs were determined. Results: Our study revealed that 82 mRNAs and 52 lncRNAs were differentially expressed in the placenta of mice fed an HFD during pregnancy, and 202 mRNAs and 120 lncRNAs were differentially expressed in gonadal fat. GO and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed differentially expressed mRNAs of placenta were closely related to extracellular matrix interactions, digestion, adhesion, and metabolism, whereas the differentially expressed mRNAs in adipose tissue were related to metabolic and insulin signalling pathways. The gene network demonstrated that Actg2, Cnfn, Muc16, Serpina3k, NONMMUT068202, and NONMMUT068203, were the core of the network in placental tissue, and the genes Tkt, Acss2, and Elovl6 served as the core of the network in gonadal fat tissue. Conclusion: These newly identified key genes and pathways in mice might provide valuable information regarding the pathogenesis of GDM and might be used to improve early diagnosis, prevention, drug design, and clinical treatment.


2021 ◽  
Author(s):  
Zhuohong Tang ◽  
Ting Luo ◽  
Peng Huang ◽  
Mi Luo ◽  
Jianghua Zhu ◽  
...  

Improvement of glycolipid disorders and gut dysbacteriosis by nuciferine in high-fat diet-induced gestational diabetes mellitus mice.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 164-LB
Author(s):  
SOUMYALEKSHMI NAIR ◽  
VALESKA ORMAZABAL ◽  
NANTHINI JAYABALAN ◽  
DOMINIC GUANZON ◽  
ANDREW LAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document