scholarly journals Navigating Potential Hype and Opportunity in Governing Marine Carbon Removal

2021 ◽  
Vol 3 ◽  
Author(s):  
Miranda Boettcher ◽  
Kerryn Brent ◽  
Holly Jean Buck ◽  
Sean Low ◽  
Duncan McLaren ◽  
...  

As the technical and political challenges of land-based carbon dioxide removal (CDR) approaches become more apparent, the oceans may be the new “blue” frontier for carbon drawdown strategies in climate governance. Drawing on lessons learnt from the way terrestrial carbon dioxide removal emerged, we explore increasing overall attention to marine environments and mCDR projects, and how this could manifest in four entwined knowledge systems and governance sectors. We consider how developments within and between these “frontiers” could result in different futures—where hype and over-promising around marine carbon drawdown could enable continued time-buying for the carbon economy without providing significant removals, or where reforms to modeling practices, policy development, innovation funding, and legal governance could seek co-benefits between ocean protection, economy, and climate.

2016 ◽  
Vol 7 (4) ◽  
pp. 783-796 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.


2019 ◽  
Vol 3 (11) ◽  
pp. 3135-3146 ◽  
Author(s):  
William J. Sagues ◽  
Sunkyu Park ◽  
Hasan Jameel ◽  
Daniel L. Sanchez

Synergistic integration of BECCS and DAC systems decreases costs, increases carbon removal, and extends the impact of scarce biomass resources.


2016 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already transgressed, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how societal monitoring and management of atmospheric CO2 concentrations with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a transgression of the planetary boundaries of land system change and ocean acidification. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries depend critically on the sensitivity and strength of the tCDR management system, as well as underlying emission pathways. While tCDR has the potential to ensure the Earth system's persistence within a carbon safe operating space under low emission pathways, this potential decreases rapidly for medium to high emission pathways.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John E. T. Bistline ◽  
Geoffrey J. Blanford

AbstractCarbon dioxide removal technologies, such as bioenergy with carbon capture and direct air capture, are valuable for stringent climate targets. Previous work has examined implications of carbon removal, primarily bioenergy-based technologies using integrated assessment models, but not investigated the effects of a portfolio of removal options on power systems in detail. Here, we explore impacts of carbon removal technologies on electric sector investments, costs, and emissions using a detailed capacity planning and dispatch model with hourly resolution. We show that adding carbon removal to a mix of low-carbon generation technologies lowers the costs of deep decarbonization. Changes to system costs and investments from including carbon removal are larger as policy ambition increases, reducing the dependence on technologies like advanced nuclear and long-duration storage. Bioenergy with carbon capture is selected for net-zero electric sector emissions targets, but direct air capture deployment increases as biomass supply costs rise.


2020 ◽  
Vol 26 (9) ◽  
pp. 5087-5105 ◽  
Author(s):  
Ryan M. Bright ◽  
Micky Allen ◽  
Clara Antón‐Fernández ◽  
Helmer Belbo ◽  
Lise Dalsgaard ◽  
...  

2020 ◽  
Author(s):  
Ryan Bright ◽  
Micky Allen ◽  
Clara Anton-Fernandez ◽  
Lise Dalsgaard ◽  
Stephanie Eisner ◽  
...  

<p>As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (<em>Picea abies</em> (L) H. Karst) on non-forested lands (i.e., aff-/reforestation) and secondary forested lands dominated by early successional broadleaved tree species (i.e., improved forest management).  Given the need to achieve net zero emissions in the latter half of the 21<sup>st</sup> century in effort to limit the global mean temperature rise to “well below” 2 °C, the mitigation potential of such a policy is unclear given relatively slow tree growth rates in the region.  Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counter the benefits of an enhanced forest CO<sub>2</sub> sink in high latitude regions.  Here, we carry out a rigorous empirical assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation (AR) and improved forest management (IFM) projects in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21<sup>st</sup> century and beyond.  We find that surface albedo changes would likely play a negligible role in counteracting the carbon cycle benefit of tCDR, yet given slow forest growth rates in the region, meaningful tCDR benefits from AR and IFM projects would not be realized until the end of the 21<sup>st</sup> century, with maximum benefits occurring around 2150.  We estimate Norway’s total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (± 240) and 852 (± 295) Mt CO<sub>2</sub>-eq. at mean costs of US$ 29 (± 18) and US$ 26 (± 14) per ton CDR, respectively.  For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway’s total current annual production-based (i.e., territorial) CO<sub>2</sub>-eq. emissions.</p>


Sign in / Sign up

Export Citation Format

Share Document