scholarly journals Early impairment of myocardial deformation assessed by regional speckle-tracking echocardiography in the indeterminate form of Chagas disease without fibrosis detected by cardiac magnetic resonance

2020 ◽  
Vol 14 (11) ◽  
pp. e0008795
Author(s):  
Minna Moreira Dias Romano ◽  
Henrique Turin Moreira ◽  
José Antônio Marin-Neto ◽  
Priscila Elias Baccelli ◽  
Fawaz Alenezi ◽  
...  

Chagas disease (CD) will account for 200,000 cardiovascular deaths worldwide over the next 5 years. Early detection of chronic Chagas cardiomyopathy (CCC) is a challenge. We aimed to test if speckle-tracking echocardiography (STE) can detect incipient myocardial damage in CD. METHODS: Among 325 individuals with positive serological tests, 25 (age 55±12yrs) were selected to compose the group with indeterminate form of Chagas disease (IFCD), based on stringent criteria of being asymptomatic and with normal EKG/X-ray studies. This group was compared with a group of 20 patients with CCC (55±11yrs) and a group of 20 non-infected matched control (NC) subjects (48±10yrs). CD patients and NC were submitted to STE and CD patients were submitted to cardiac magnetic resonance (CMR) with late gadolinium administration to detect cardiac fibrosis by the late enhancement technique. Global longitudinal strain (GLS), circumferential (GCS) and radial strain (GRS) were defined as the average of segments measured from three apical view (GLS) and short axis views (GRS and GCS). Regional left ventricular (LV) longitudinal strain (Reg LS) was measured from each of the 17 segments. Twist was measured as systolic peak difference between basal and apical rotation and indexed to LV length to express torsion. RESULTS: STE global indices (GLS, GCS, twist and torsion) were reduced in CCC vs NC (GLS: -14±6.3% vs -19.3±1.6%, p = 0.001; GCS: -13.6±5.2% vs -17.3 ±2.8%; p = 0.008; twist: 8±7° vs 14±7°, p = 0.01 and torsion: 0.96±1°/cm vs 1.9±1°/cm, p = 0.005), but showed no differences in IFCD vs NC. RegLS was reduced in IFCD vs NC in four LV segments: basal-inferior (-16.3±3.3% vs -18.6±2.2%, p = 0.013), basal inferoseptal (-13.1±3.4 vs -15.2±2.7, p = 0.019), mid-inferoseptal (-17.7±3.2 vs -19.4±2, p = 0.032) and mid-inferolateral (-15.2±3.5 vs -17.8±2.8, p = 0.014). These abnormalities in RegLS occurred in the absence of myocardial fibrosis detectable with CMR in nearly 92% of subjects with IFCD, while myocardial fibrosis was present in 65% with CCC. CONCLUSION: RegLS detects early regional impairment of myocardial strain that is independent from fibrosis in IFCD subjects.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Holzknecht ◽  
M Reindl ◽  
C Tiller ◽  
I Lechner ◽  
T Hornung ◽  
...  

Abstract Background Left ventricular ejection fraction (LVEF) is the parameter of choice for left ventricular (LV) function assessment and risk stratification of patients with ST-elevation myocardial infarction (STEMI); however, its prognostic value is limited. Other measures of LV function such as global longitudinal strain (GLS) and mitral annular plane systolic excursion (MAPSE) might provide additional prognostic information post-STEMI. However, comprehensive investigations comparing these parameters in terms of prediction of hard clinical events following STEMI are lacking so far. Purpose We aimed to investigate the comparative prognostic value of LVEF, MAPSE and GLS by cardiac magnetic resonance (CMR) imaging in the acute stage post-STEMI for the occurrence of major adverse cardiac events (MACE). Methods This observational study included 407 consecutive acute STEMI patients treated with primary percutaneous coronary intervention (PCI). Comprehensive CMR investigations were performed 3 [interquartile range (IQR): 2–4] days after PCI to determine LVEF, GLS and MAPSE as well as myocardial infarct characteristics. Primary endpoint was the occurrence of MACE defined as composite of death, re-infarction and congestive heart failure. Results During a follow-up of 21 [IQR: 12–50] months, 40 (10%) patients experienced MACE. LVEF (p=0.005), MAPSE (p=0.001) and GLS (p<0.001) were significantly related to MACE. GLS showed the highest prognostic value with an area under the curve (AUC) of 0.71 (95% CI 0.63–0.79; p<0.001) compared to MAPSE (AUC: 0.67, 95% CI 0.58–0.75; p=0.001) and LVEF (AUC: 0.64, 95% CI 0.54–0.73; p=0.005). After multivariable analysis, GLS emerged as sole independent predictor of MACE (HR: 1.22, 95% CI 1.11–1.35; p<0.001). Of note, GLS remained associated with MACE (p<0.001) even after adjustment for infarct size and microvascular obstruction. Conclusion CMR-derived GLS emerged as strong and independent predictor of MACE after acute STEMI with additive prognostic validity to LVEF and parameters of myocardial damage. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saikrishna Ananthapadmanabhan ◽  
Giau Vo ◽  
Tuan Nguyen ◽  
Hany Dimitri ◽  
James Otton

Abstract Background Cardiac magnetic resonance feature tracking (CMR-FT) and speckle tracking echocardiography (STE) are well-established strain imaging modalities. Multilayer strain measurement permits independent assessment of endocardial and epicardial strain. This novel and layer specific approach to evaluating myocardial deformation parameters may provide greater insight into cardiac contractility when compared to whole-layer strain analysis. The aim of this study is to validate CMR-FT as a tool for multilayer strain analysis by providing a direct comparison between multilayer global longitudinal strain (GLS) values between CMR-FT and STE. Methods We studied 100 patients who had an acute myocardial infarction (AMI), who underwent CMR imaging and echocardiogram at baseline and follow-up (48 ± 13 days). Dedicated tissue tracking software was used to analyse single- and multi-layer GLS values for CMR-FT and STE. Results Correlation coefficients for CMR-FT and STE were 0.685, 0.687, and 0.660 for endocardial, epicardial, and whole-layer GLS respectively (all p < 0.001). Bland Altman analysis showed good inter-modality agreement with minimal bias. The absolute limits of agreement in our study were 6.4, 5.9, and 5.5 for endocardial, whole-layer, and epicardial GLS respectively. Absolute biases were 1.79, 0.80, and 0.98 respectively. Intraclass correlation coefficient (ICC) values showed moderate agreement with values of 0.626, 0.632, and 0.671 respectively (all p < 0.001). Conclusion There is good inter-modality agreement between CMR-FT and STE for whole-layer, endocardial, and epicardial GLS, and although values should not be used interchangeably our study demonstrates that CMR-FT is a viable imaging modality for multilayer strain


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 562
Author(s):  
Rima Šileikienė ◽  
Karolina Adamonytė ◽  
Aristida Ziutelienė ◽  
Eglė Ramanauskienė ◽  
Jolanta Justina Vaškelytė

Background and objectives: Childhood obesity has reached epidemic levels in the world. Obesity in children is defined as a body mass index (BMI) equal to or above the 95th percentile for age and sex. The aim of this study was to determine early changes in cardiac structure and function in obese children by comparing them with their nonobese peers, using echocardiography methods. Materials and methods: The study enrolled 35 obese and 37 age-matched nonobese children. Standardized 2-dimensional (2D), pulsed wave tissue Doppler, and 2D speckle tracking echocardiography were performed. The z-score BMI and lipid metabolism were assessed in all children. Results: Obese children (aged 13.51 ± 2.15 years; 20 boys; BMI z-score of 0.88 ± 0.63) were characterized by enlarged ventricular and atrial volumes, a thicker left ventricular posterior wall, and increased left ventricular mass. Decreased LV and RV systolic and diastolic function was found in obese children. Atrial peak negative (contraction) strain (−2.05% ± 2.17% vs. −4.87% ± 2.97%, p < 0.001), LV and RV global longitudinal strain (−13.3% ± 2.88% vs. −16.87% ± 3.39%; −12.51% ± 10.09% vs. −21.51% ± 7.42%, p < 0.001), and LV global circumferential strain (−17.0 ± 2.7% vs. −19.5 ± 2.9%, p < 0.001) were reduced in obese children. LV torsion (17.94° ± 2.07° vs. 12.45° ± 3.94°, p < 0.001) and normalized torsion (2.49 ± 0.4°/cm vs. 1.86 ± 0.61°/cm, p = 0.001) were greater in obese than nonobese children. A significant inverse correlation was found between LV and RV global longitudinal strain and BMI (r = −0.526, p < 0.01; r = −0.434, p < 0.01) and total cholesterol (r = −0.417, p < 0.01). Multivariate analysis revealed that the BMI z-score was independently related to LV and RV global longitudinal strain as well as LV circumferential and radial strain. Conclusion: 2D speckle tracking echocardiography is beneficial in the early detection of regional LV systolic and diastolic dysfunctions, with preserved ejection fraction as well as additional RV and atrial involvement, in obese children. Obesity may negatively influence atrial and ventricular function, as measured by 2D speckle tracking echocardiography. Obese children, though they are apparently healthy, may have subclinical myocardial dysfunction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Sun ◽  
Xuehua Shen ◽  
Jing Wang ◽  
Shuangshuang Zhu ◽  
Yanting Zhang ◽  
...  

Objective: This study aimed to: (1) evaluate the association between myocardial fibrosis (MF) quantified by extracellular volume fraction (ECV) and myocardial strain measured by two-dimensional (2D)- and three-dimensional speckle-tracking echocardiography (3D-STE) and (2) further investigate which strain parameter measured by 2D- and 3D-STE is the more robust predictor of MF in heart transplant (HT) recipients.Methods: A total of 40 patients with HT and 20 healthy controls were prospectively enrolled. Left ventricular (LV)-global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were measured by 2D- and 3D-STE. LV diffuse MF was defined by cardiovascular magnetic resonance (CMR)-ECV.Results: The HT recipients had a significantly higher native T1 and ECV than healthy controls (1043.8 ± 34.0 vs. 999.7 ± 19.7 ms, p &lt; 0.001; 26.6 ± 2.7 vs. 24.3 ± 1.8%, p = 0.02). The 3D- and 2D-STE-LVGLS and LVGCS were lower (p &lt; 0.005) in the HT recipients than in healthy controls. ECV showed a moderate correlation with 2D-LVGLS (r = 0.53, p = 0.002) and 3D-LVGLS (r = 0.60, p &lt; 0.001), but it was not correlated with 2D or 3D-LVGCS, or LVGRS. Furthermore, 3D-LVGLS and 2D-LVGLS had a similar correlation with CMR-ECV (r = 0.60 vs. 0.53, p = 0.670). A separate stepwise multivariate linear analysis showed that both the 2D-LVGLS (β = 0.39, p = 0.019) and 3D-LVGLS (β = 0.54, p &lt; 0.001) were independently associated with CMR-ECV.Conclusion: CMR marker of diffuse MF was present in asymptomatic patients with HT and appeared to be associated with decreased myocardial strain by echocardiography. Both the 2D- and 3D-LVGLS were independently correlated with diffuse LVMF, which may provide an alternative non-invasive tool for monitoring the development of adverse fibrotic remodeling during the follow-up of HT recipients.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mingxing XIE ◽  
TiAN Fangyan ◽  
Li Yuman

Background: Previous studies showed that 2-dimensional speckle-tracking echocardiography (2D-STE) correlates with the extent of left ventricular(LV)myocardial fibrosis (MF). However, the utility of 3D-STE in predicting LV MF remains unknown. We aimed to identify which LV strain assessed by 2D- and 3D-STE is the most reliable parameter to predict LV MF in patients with end-stage HF. Methods: 105 patients with end-stage HF undergoing heart transplantation were enrolled in our study. LV global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) were measured by 2D- and 3D-STE. LV ejection fraction (EF) was determined by 3D-STE.The degree of MF was quantified by using Masson trichrome stain in LV myocardial samples. The study population was divided into 3 groups according to the degree of MF on histology (mild, moderate, and severe MF). Results: Patients with severe MF had lower 2D-STE, 3D-STE, and LVEF compared with those with mild and moderate MF. LV MF strongly correlated with 3D-LVGLS (r =0.73; P < 0.001), modestly with 3D-LVGRS (r =0.53; P< 0.001), weakly with 2D-LVGLS (r =0.49, P<0.001), 3D-LVGCS(r = 0.37, P <0.01), and LVEF (r =-0.46, P<0.001), but did not correlated with 2D-LVGCS and 2D-LVGRS. 3D-LVGLS correlated best with the degree of MF (r = 0.73 vs 0.37~0.53; P<0.05) compared with other 2D- and 3D-STE, and LVEF. 3D-LVGLS had the highest accuracy for detecting severe MF (area under the curve 0.90 VS 0.62~0.80; P< 0.05) compared with the 2D- and 3D-STE, and LVEF. Stepwise multivariate analysis showed that 3D-LVGLS (β=0.79, p < 0.001) was the only independent predictor of the degree of MF. Conclusion: 3D-LVGLS may be an ideal surrogate marker for LV MF in patients with end-stage HF.


2020 ◽  
Vol 14 ◽  
pp. 117954682093001
Author(s):  
Manal F Elshamaa ◽  
Fatma A Mostafa ◽  
Inas AES Sad ◽  
Ahmed M Badr ◽  
Yomna AEM Abd Elrahim

Background: Cardiac systolic dysfunction was potentially found in adult patients with end-stage renal disease (ESRD) who have preserved left ventricular ejection fraction (EF%). In children with ESRD, little data are available on early changes in myocardial function. This study aimed to detect the early changes in myocardial mechanics in pediatric patients with ESRD using speckle tracking echocardiography (STE). Methods: Thirty ESRD children receiving hemodialysis (HD) and30 age-matched controls were prospectively studied. Patients underwent echocardiographic studies before and after HD. Left ventricular longitudinal strain (LS), circumferential strain (CS), and radial strain (RS) myocardial deformation parameters (strain, strain rate) were evaluated by STE. Results: The LS was significantly reduced in pre-HD and post-HD patients compared with controls ( P = .000). Controls showed the highest global longitudinal strain. The RS measurements did not differ significantly among the studied groups except for the inferior segment that is significantly reduced after HD compared with controls ( P < .05). The CS was significantly reduced in pre-HD and post-HD patients compared with controls at the lateral and posterior segments ( P = .035 and P = .013, respectively). Conclusion: Speckle-tracking echocardiography might detect early changes in myocardial mechanics in children with ESRD with preserved EF%.


Sign in / Sign up

Export Citation Format

Share Document