scholarly journals Radiocarbon and Luminescence Dating of Lacustrine Sediments in Zhari Namco, Southern Tibetan Plateau

2021 ◽  
Vol 9 ◽  
Author(s):  
Lu Cong ◽  
Yixuan Wang ◽  
Xiying Zhang ◽  
Tianyuan Chen ◽  
Donglin Gao ◽  
...  

There are more than 1,000 lakes within the Tibetan Plateau (TP), all of which are sensitive to changes in regional climate and local hydrology. Lacustrine sediments within these lakes preserve a good record of these changes. However, determining their precise ages is difficult due to the complex nature of lake reservoir effects (LRE), which limit our understanding of paleoenvironmental changes. Focusing on an exposed 600 cm thick lacustrine sediment profile located in western Zhari Namco, we used a combination of both radiocarbon and optically stimulated luminescence (OSL) dating methods in order to evaluate the carbon reservoirs of bulk organic matter (BOM) and aquatic plant remnants (APR), and to explore the age differences between 14C and OSL and their respective reliability. We demonstrated that (i) OSL ages were changed in stratigraphic order, and the OSL age just below the beach gravel layer was consistent with previously reported paleoshoreline ages; (ii) 14C ages were divergent between BOM and grass leaves; (iii) 14C ages of BOM were older than 14C ages of APR; and (iv) all 14C ages were older than OSL ages. This could be attributed to changing LRE in the past, causing the 14C ages to appear unstable during the deposition period. Although the 14C ages of terrestrial plant remnants (TPR) were not affected by LRE, an analyzed twig nonetheless returned a 14C age older than its respective layer’s OSL age, suggesting it may have been preserved on land prior to transportation into the lake. Our study suggests that OSL ages are more reliable than 14C ages with respect to Zhari Namco lacustrine sediments. We recommend caution when interpreting paleoenvironmental changes based on lacustrine sediment 14C ages alone.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yandong Hou ◽  
Hao Long ◽  
Lei Gao ◽  
Ji Shen

AbstractLuminescence dating technology has been used for chronological constraints on lacustrine sediments due to the ubiquitous materials (e.g., quartz and feldspar) as dosimeters, and a relatively long dating range, compared with the commonly used radiocarbon dating method. However, quartz dating on the Tibetan Plateau may suffer from dim and unstable luminescence signals. In the current study, we investigate a lake-related outcrop from the shore of Cuoe Lake on the central Tibetan Plateau. Both coarse-grained quartz and K-feldspar fractions were extracted, and OSL and post-IR IRSL signals were measured from these fractions, respectively. Combining the stratigraphy analysis and dating results, this study shows that: (1) quartz appears to be unsuitable for dating because of very dim natural signals and even anomalous fading (average g-value: 4.30 ± 2.51 %/decade). The suitability of the applied pIRIR protocol measured at 150°C (pIRIR150) for K-feldspar samples was confirmed by a set of luminescence tests; (2) compared with the luminescence-based chronology, the 14C age of shells from the same sediment layer yielded older age by ~7 ka, which is likely attributed to hard water reservoir effect in Cuoe Lake; (3) the lake level reached its peak and maintained high-stand during the early Holocene (~9.4–7.1 ka). This study highlights the applicability of K-feldspar luminescence dating when the counterpart quartz OSL is insensitive and encounters anomalous fading.


2020 ◽  
Author(s):  
Xiaoyan Yang ◽  
Juzhi Hou ◽  
Feixue San

Abstract Continental chemical weathering has been suggested to affect the concentration of atmospheric carbon dioxide that influences global climate change at different time scales. Various indices for chemical weathering have been adopted to investigate past change in chemical weathering intensity and climate change on oceanic and lacustrine sediment archives. The reliability of the chemical weathering indices has been questioned as most sediments likely originate from multiple types of bedrock that may experience various degrees of chemical weathering and can thus be reliably robust indicators of climate and paleoclimate. Here we present Sr-type (e.g. Rb/Sr Sr/Ba) and Na-type (e.g. CIA CIW PIA CPA) chemical weathering indices for top soils across the southern Tibetan Plateau to discuss the chemical weathering characteristic in the Tibetan Plateau and to examine their response to regional climate variation. The results of chemical indices and the A-CN-K ternary plot show that the southern Tibetan Plateau is under the carbonate control of the primary chemical weathering stage with the cold-dry climate. Correlation analyses show shat Sr-type indices co-vary with mean annual temperature and annual precipitation while Na-type indices show little consistence with regional climate. The climate condition is the dominant control of Sr-type indices of top soils in the study area and the bedrock may be the dominant control for the Na-type indices. We also compared the corresponding indices at a Holocene lacustrine sediment profile in the Qaidam Basin in the northeast Tibetan Plateau with regional climatic records which strongly supports our observation in the top soils. The results of the study suggest that for the relative cold and dry climate in Tibetan Plateau the Sr-type indices are more sensitive to climate condition than Na-type indices. This suggests that the Sr-type indices are likely more suitable than Na-type indices to reflect the change of climate on the Tibetan Plateau. Caution should be taken for using the Na-type indices for reconstructing the past change in climate for the study area.


2017 ◽  
Vol 56 (4) ◽  
pp. 230-239 ◽  
Author(s):  
Lingjing Zhu ◽  
Jiming Jin ◽  
Xin Liu ◽  
Lei Tian ◽  
Qunhui Zhang

2021 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Weilin Zhang ◽  
Chunhui Song ◽  
...  

<p>Global cooling, the early uplift of the Tibetan Plateau, and the retreat of the Paratethys are three main factors that regulate long-term climate change in the Asian interior during the Cenozoic. However, the debated elevation history of the Tibetan Plateau and the overlapping climate effects of the Tibetan Plateau uplift and Paratethys retreat makes it difficult to assess the driving mechanism on regional climate change in a particular period. Some recent progress suggests that precisely dated Paratethys transgression/regression cycles appear to have fluctuated over broad regions with low relief in the northern Tibetan Plateau in the middle Eocene–early Oligocene, when the global climate was characterized by generally continuous cooling followed by the rapid Eocene–Oligocene climate transition (EOT). Therefore, a middle Eocene–early Oligocene record from the Asian interior with unambiguous paleoclimatic implications offers an opportunity to distinguish between the climatic effects of the Paratethys retreat and those of global cooling.</p><p>Here, we present a complete paleolake salinity record from middle Eocene to early Miocene (~42-29 Ma) in the Qaidam Basin using detailed clay boron content and clay mineralogical investigations. Two independent paleosalimeters, equivalent boron and Couch’s salinity, collectively present a three-staged salinity evolution, from an oligohaline–mesohaline environment in the middle Eocene (42-~34 Ma) to a mesosaline environment in late Eocene-early Oligocene (~34-~29 Ma). This clay boron-derived salinity evolution is further supported by the published chloride-based and ostracod-based paleosalinity estimates in the Qaidam Basin. Our quantitative paleolake reconstruction between ~42 and 29 Ma in the Qaidam Basin resembles the hydroclimate change in the neighboring Xining Basin, of which both present good agreement with changes of marine benthic oxygen isotope compositions. We thus speculated that the secular trend of clay boron-derived paleolake salinity in ~42-29 Ma is primarily controlled by global cooling, which regulates regional climate change by influencing the evaporation capacity in the moisture source of Qaidam Basin. Superimposed on this trend, the Paratethys transgression/regression cycles served as an important factor regulating wet/dry fluctuations in the Asian interior between ~42 and ~34 Ma.</p>


2018 ◽  
Vol 176 ◽  
pp. 05040
Author(s):  
Guangyao Dai ◽  
Songhua Wu ◽  
Xiaoquan Song ◽  
Xiaochun Zhai

Cirrus clouds affect the energy budget and hydrological cycle of the earth’s atmosphere. The Tibetan Plateau (TP) plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shixin Huang ◽  
Xi Chun

Lake-level reconstruction of inland enclosed lakes especially for monsoon-sensitive areas is of great significance to reveal regional climate changes. Daihai, a typical enclosed lake at the marginal of the East Asian summer monsoon (EASM) area in north China, is sensitive to climate changes due to its unique regional characteristics. There were a series of lakeshore terraces, highstand lacustrine sediments, and braided river deltas, providing sufficient geomorphologic and stratigraphic evidence for the reconstruction of lake-level fluctuations of Daihai. Reconstructed lake-level variations during the early and mid-Holocene were constructed based on 22 quartz optical stimulated luminescence (OSL) ages from six well-preserved profiles around Daihai Basin. Our results indicated Daihai showed a relatively low level at 10.2 ka, and a gradually increasing lake level following the enhanced monsoon precipitation during the mid-Holocene. Specifically, the high lake level began to develop at 8.1 ka and reached the maximum at 5.2 ka, with ∼40 m higher than present. At this time, the lake area expanded to ∼400 km2, approximately six times as large as that of present, corresponding to the maximum monsoon precipitation and intensity of EASM during the mid-Holocene. However, our stratigraphic records showed a part of the depositional records in the north and east of the Daihai was missed after 5.2 ka, probably indicating a sudden drop of the Daihai lake level. These rapid level fluctuations were likely to be interpreted by some local scenarios and need to be further investigated in the future. Overall, the lake-level fluctuation of Daihai during the early and mid-Holocene was slightly different from that observed in the previously published regional records. Possibly, the interaction of the EASM and regional feedback from topography, and hydrology factors might have contributed to the spatial complexity and distinction.


2015 ◽  
Vol 83 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Eike F. Rades ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen ◽  
Qiang Xu ◽  
Lin Ding

Many lakes on the Tibetan Plateau exhibit strandplains with a series of beach ridges extending high above the current lake levels. These beach ridges mark former lake highstands and therefore dating their formation allows the reconstruction of lake-level histories and environmental changes. In this study, we establish a lake-level chronology of Tangra Yum Co (fifth largest lake on the Tibetan Plateau) based on luminescence dating of feldspar from 17 beach-ridge samples. The samples were collected from two strandplains southeast and north of the lake and range in elevation from the current shore to 140 m above the present lake. Using a modified post-infrared IRSL protocol at 170°C we successfully minimised the anomalous fading in the feldspar IRSL signal, and obtained reliable dating results. The luminescence ages indicate three different stages of lake-level decline during the Holocene: (1) a phase of rapid decline (~ 50 m) from ~ 6.4 to ~ 4.5 ka, (2) a period of slow decline between ~ 4.5 and ~ 2.0 ka (~ 20 m), and (3) a fast decline by 70 m between ~ 2 ka and today. Our findings suggest a link between a decrease in monsoonal activity and lake-level decline since the early Holocene.


2018 ◽  
Vol 10 (10) ◽  
pp. 1534 ◽  
Author(s):  
Linan Guo ◽  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Junsheng Li ◽  
...  

In the Tibetan Plateau (TP), the changes of lake ice phenology not only reflect regional climate change, but also impose substantial ecohydrological impacts on the local environment. Due to the limitation of ground observation, remote sensing has been used as an alternative tool to investigate recent changes of lake ice phenology. However, uncertainties exist in the remotely sensed lake ice phenology owing to both the data and methods used. In this paper, three different remotely sensed datasets are used to investigate the lake ice phenology variation in the past decade across the Tibetan Plateau, with the consideration of the underlying uncertainties. The remotely sensed data used include reflectance data, snow product, and land surface temperature (LST) data of moderate resolution imaging spectroradiometer (MODIS). The uncertainties of the three methods based on the corresponding data are assessed using the triple collocation approach. Comparatively, it is found that the method based on reflectance data outperforms the other two methods. The three methods are more consistent in determining the thawing dates rather than the freezing dates of lake ice. It is consistently shown by the three methods that the ice-covering duration in the northern part of the TP lasts longer than that in the south. Though there is no general trend of lake ice phenology across the TP for the period of 2000–2015, the warmer climate and stronger wind have led to the earlier break-up of lake ice.


2019 ◽  
Vol 32 (20) ◽  
pp. 7037-7053
Author(s):  
Hongwen Zhang ◽  
Yanhong Gao ◽  
Jianwei Xu ◽  
Yu Xu ◽  
Yingsha Jiang

Abstract To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation P − E against Global Land Data Assimilation System (GLDAS) data. The mechanism of P − E changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and P − E over the TP. WRF projects a diverse spatial variation of P − E changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates P − E changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates P − E changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates P − E changes. Furthermore, future P − E changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.


Sign in / Sign up

Export Citation Format

Share Document